首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histamine stimulation of swine carotid artery induces both contraction and actin polymerization. The importance of stimulus-induced actin polymerization is not known. Tyrosine phosphorylation of the scaffolding protein paxillin is thought to be an important regulator of actin polymerization. Noise temperature, hysteresivity, and phase angle are rheological measures of the fluidity of a tissue, i.e., whether the muscle is more a "Hookean solid" or a "Newtonian liquid." Y118 paxillin phosphorylation, crossbridge phosphorylation, actin polymerization, noise temperature, hysteresivity, phase angle, real stiffness, and stress were measured in intact swine carotid arteries that were depolarized with high K+ or stimulated with histamine. The initial rapid force development phase of high-K+ or histamine-induced contraction was associated with increased crossbridge phosphorylation but no significant change in Y118 paxillin phosphorylation, actin polymerization, noise temperature, hysteresivity, or phase angle. This suggests that the initial contraction was caused by the increase in crossbridge phosphorylation and did not alter the tissue's rheology. Only after full force development was there a significant increase in Y118 paxillin phosphorylation and actin polymerization associated with a significant decrease in noise temperature and hysteresivity. These data suggest that some part of the sustained contraction may depend on stimulated actin polymerization and/or a transition to a more "solid" rheology. Supporting this contention was the finding that an inhibitor of actin polymerization, latrunculin-A, reduced force while increasing noise temperature/hysteresivity. Further research is needed to determine whether Y118 paxillin phosphorylation, actin polymerization, and changes in rheology could have a role in arterial smooth muscle contraction. cytoskeleton; hysteresivity; latch hypothesis; vascular smooth muscle  相似文献   

2.
BACKGROUND: Previous work has led to the hypothesis that cofilin severing, as regulated by PLC, is involved in chemotactic sensing. We have tested this hypothesis by investigating whether activation of endogenous cofilin is spatially and temporally linked to sensing an EGF point source in carcinoma cells. RESULTS: We demonstrate that inhibition of endogenous cofilin activity with either siRNA or overexpression of LIMK suppresses directional sensing in carcinoma cells. LIMK siRNA knockdown, which suppresses cofilin phosphorylation, and microinjection of S3C cofilin, a cofilin mutant that is constitutively active and not phosphorylated by LIMK, also inhibits directional sensing and chemotaxis. These results indicate that phosphorylation of cofilin by LIMK, in addition to cofilin activity, is required for chemotaxis. Cofilin activity concentrates rapidly at the newly formed leading edge facing the gradient, whereas cofilin phosphorylation increases throughout the cell. Quantification of these results indicates that the amplification of asymmetric actin polymerization required for protrusion toward the EGF gradient occurs at the level of cofilin but not at the level of PLC activation by EGFR. CONCLUSIONS: These results indicate that local activation of cofilin by PLC and its global inactivation by LIMK phosphorylation combine to generate the local asymmetry of actin polymerization required for chemotaxis.  相似文献   

3.

Background

ADF/cofilin proteins are key regulators of actin dynamics. Their function is inhibited by LIMK-mediated phosphorylation at Ser-3. Previous in vitro studies have shown that dependent on its concentration, cofilin either depolymerizes F-actin (at low cofilin concentrations) or promotes actin polymerization (at high cofilin concentrations).

Methodology/Principal Findings

We found that after in vivo cross-linking with different probes, a cofilin oligomer (65 kDa) could be detected in platelets and endothelial cells. The cofilin oligomer did not contain actin. Notably, ADF that only depolymerizes F-actin was present mainly in monomeric form. Furthermore, we found that formation of the cofilin oligomer is regulated by Ser-3 cofilin phosphorylation. Cofilin but not phosphorylated cofilin was present in the endogenous cofilin oligomer. In vitro, formation of cofilin oligomers was drastically reduced after phosphorylation by LIMK2. In endothelial cells, LIMK-mediated cofilin phosphorylation after thrombin-stimulation of EGFP- or DsRed2-tagged cofilin transfected cells reduced cofilin aggregate formation, whereas inhibition of cofilin phosphorylation after Rho-kinase inhibitor (Y27632) treatment of endothelial cells promoted formation of cofilin aggregates. In platelets, cofilin dephosphorylation after thrombin-stimulation and Y27632 treatment led to an increased formation of the cofilin oligomer.

Conclusion/Significance

Based on our results, we propose that an equilibrium exists between the monomeric and oligomeric forms of cofilin in intact cells that is regulated by cofilin phosphorylation. Cofilin phosphorylation at Ser-3 may induce conformational changes on the protein-protein interacting surface of the cofilin oligomer, thereby preventing and/or disrupting cofilin oligomer formation. Cofilin oligomerization might explain the dual action of cofilin on actin dynamics in vivo.  相似文献   

4.
The increase in intracellular Ca(2+) and myosin light chain (MLC) phosphorylation in response to the contractile activation of tracheal smooth muscle is greater at longer muscle lengths (21). However, MLC phosphorylation can also be stimulated by Ca(2+)-insensitive signaling pathways (19). The cytoskeletal proteins paxillin and focal adhesion kinase (FAK) mediate a Ca(2+)-independent length-sensitive signaling pathway in tracheal smooth muscle (30). We used alpha-toxin-permeabilized tracheal smooth muscle strips to determine whether the length sensitivity of MLC phosphorylation can be regulated by a Ca(2+)-insensitive signaling pathway and whether the length sensitivity of active tension depends on the length sensitivity of myosin activation. Although active tension remained length sensitive, ACh-induced MLC phosphorylation was the same at optimal muscle length (L(o)) and 0.5 L(o) when intracellular Ca(2+) was maintained at pCa 7. MLC phosphorylation was also the same at L(o) and 0.5 L(o) in strips stimulated with 10 microM Ca(2+). In contrast, the Ca(2+)-insensitive tyrosine phosphorylation of FAK and paxillin stimulated by ACh was higher at L(o) than at 0.5 L(o). We conclude that the length-sensitivity of MLC phosphorylation depends on length-dependent changes in intracellular Ca(2+) but that length-dependent changes in MLC phosphorylation are not the primary mechanism for the length sensitivity of active tension.  相似文献   

5.
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.  相似文献   

6.
Paxillin is involved in the regulation of Helicobacter pylori-mediated gastric epithelial cell motility. We investigated the signaling pathways regulating H. pylori-induced paxillin phosphorylation and the effect of the H. pylori virulence factors cag pathogenicity island (PAI) and outer inflammatory protein (OipA) on actin stress fiber formation, cell phenotype, and IL-8 production. Gastric cell infection with live H. pylori induced site-specific phosphorylation of paxillin tyrosine (Y) 31 and Y118 in a time- and concentration-dependent manner. Activated paxillin localized in the cytoplasm at the tips of H. pylori-induced actin stress fibers. Isogenic oipA mutants significantly reduced paxillin phosphorylation at Y31 and Y118 and reduced actin stress fiber formation. In contrast, cag PAI mutants only inhibited paxillin Y118 phosphorylation. Silencing of epidermal growth factor receptor (EGFR), focal adhesion kinase (FAK), or protein kinase B (Akt) expression by small-interfering RNAs or inhibiting kinase activity of EGFR, Src, or phosphatidylinositol 3-kinase (PI3K) markedly reduced H. pylori-induced paxillin phosphorylation and morphologic alterations. Reduced FAK expression or lack of Src kinase activity suppressed H. pylori-induced IL-8 production. Compared with infection with the wild type, infection with the cag PAI mutant and oipA mutant reduced IL-8 production by nearly 80 and 50%. OipA-induced IL-8 production was FAK- and Src-dependent, although a FAK/Src-independent pathway for IL-8 production also exists, and the cag PAI may be mainly involved in this pathway. We propose paxillin as a novel cellular target for converging H. pylori-induced EGFR, FAK/Src, and PI3K/Akt signaling to regulate cytoskeletal reorganization and IL-8 production in part, thus contributing to the H. pylori-induced diseases.  相似文献   

7.
Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro‐inflammatory mediators. We examined mechanisms of LPS‐stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage‐like J774 cells. A wound‐healing assay revealed that LPS also activated directed cell movement that was followed by TNF‐α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5‐bisphosphate. Fractionation of Triton X‐100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin‐regulatory proteins, paxillin on tyrosine 118 by 80% and N‐WASP on serine 484/485 by 20%, and these events preceded activation of NF‐κB. LPS‐induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N‐WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS‐stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF‐α production suggesting that LPS‐induced cell motility is not required for TNF‐α release. J. Cell. Biochem. 113: 80–92, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

9.
We have demonstrated that antibody to ganglioside GD3 (R24) immunoprecipitates src-family tyrosine kinase Lyn from primary cerebellar granule cells and R24 treatment of the intact cells induces Lyn activation and rapid tyrosine phosphorylation of several substrates, suggesting the functional association of ganglioside GD3 with Lyn. In this study, R24 treatment of primary cerebellar granule cells enhances phosphorylation of paxillin at tyrosine residue 118 and induces filamentous actin assembly and neurite outgrowth. R24 treatment of cerebellar growth cone membrane fraction induces prominent tyrosine phosphorylation of 68 kDa protein which comigrates with phosphopaxillin at tyrosine residue 118. Tyrosine phosphorylation of paxillin is known to regulate actin cytoskeleton-dependent changes in cell morphology. Signal transduction by ganglioside GD3 is involved in growth cone morphology via tyrosine phosphorylation of paxillin.  相似文献   

10.
In Rous sarcoma virus (RSV)-transformed baby hamster kidney (BHK) cells, invadopodia can self-organize into rings and belts, similarly to podosome distribution during osteoclast differentiation. The composition of individual invadopodia is spatiotemporally regulated and depends on invadopodia localization along the ring section: the actin core assembly precedes the recruitment of surrounding integrins and integrin-linked proteins, whereas the loss of the actin core was a prerequisite to invadopodia disassembly. We have shown that invadopodia ring expansion is controlled by paxillin phosphorylations on tyrosine 31 and 118, which allows invadopodia disassembly. In BHK-RSV cells, ectopic expression of the paxillin mutant Y31F-Y118F induces a delay in invadopodia disassembly and impairs their self-organization. A similar mechanism is unraveled in osteoclasts by using paxillin knockdown. Lack of paxillin phosphorylation, calpain or extracellular signal-regulated kinase inhibition, resulted in similar phenotype, suggesting that these proteins belong to the same regulatory pathways. Indeed, we have shown that paxillin phosphorylation promotes Erk activation that in turn activates calpain. Finally, we observed that invadopodia/podosomes ring expansion is required for efficient extracellular matrix degradation both in BHK-RSV cells and primary osteoclasts, and for transmigration through a cell monolayer.  相似文献   

11.
GLUT4 vesicles are actively recruited to the muscle cell surface upon insulin stimulation. Key to this process is Rac-dependent reorganization of filamentous actin beneath the plasma membrane, but the underlying molecular mechanisms have yet to be elucidated. Using L6 rat skeletal myoblasts stably expressing myc-tagged GLUT4, we found that Arp2/3, acting downstream of Rac GTPase, is responsible for the cortical actin polymerization evoked by insulin. siRNA-mediated silencing of either Arp3 or p34 subunits of the Arp2/3 complex abrogated actin remodeling and impaired GLUT4 translocation. Insulin also led to dephosphorylation of the actin-severing protein cofilin on Ser-3, mediated by the phosphatase slingshot. Cofilin dephosphorylation was prevented by strategies depolymerizing remodeled actin (latrunculin B or p34 silencing), suggesting that accumulation of polymerized actin drives severing to enact a dynamic actin cycling. Cofilin knockdown via siRNA caused overwhelming actin polymerization that subsequently inhibited GLUT4 translocation. This inhibition was relieved by reexpressing Xenopus wild-type cofilin-GFP but not the S3E-cofilin-GFP mutant that emulates permanent phosphorylation. Transferrin recycling was not affected by depleting Arp2/3 or cofilin. These results suggest that cofilin dephosphorylation is required for GLUT4 translocation. We propose that Arp2/3 and cofilin coordinate a dynamic cycle of actin branching and severing at the cell cortex, essential for insulin-mediated GLUT4 translocation in muscle cells.  相似文献   

12.
The dynamic reorganization of actin cytoskeleton is regulated by a large number of actin-binding proteins. Among them, the interaction of ADF/cofilin with monomeric and filamentous actin is very important, since it severs actin filaments. It also positively influences actin treadmilling. The activity of ADF/cofilin is reversibly regulated by phosphorylation and dephosphorylation at Ser-3, with the phosphorylated form (P-cofilin) being inactive. Here, we studied the effects of overexpression of cofilin and two cofilin variants in the human colon adenocarcinoma LS180 cell line. We have generated the LS180 cells expressing three different cofilin variants: WT (wild type), Ser 3 Ala (S3A) (constitutively active) or Ser 3 Asp (S3D) (constitutively inactive cofilin). The cells expressing WT cofilin were characterized by abundant cell spreading and colocalization of cofilin with the submembranous F-actin. Similar effects were observed in cells expressing S3A cofilin. In contrast, LS180 cells expressing S3D cofilin remained longitudinal in morphology and cofilin was equally distributed within the cell body. Furthermore, the migration ability of LS180 cells expressing different cofilin mutants was analyzed. In comparison to control cells, we have noticed a significant, approximately fourfold increase in the migration factor value of cells overexpressing WT type cofilin. The overexpression of S3D cofilin resulted in an almost complete inhibition of cell motility. The estimation of actin pool in the cytosol of LS180 cells expressing S3A cofilin has shown a significantly lower level of total actin in reference to control cells. The opposite effect was observed in LS180 cells overexpressing S3D cofilin. In summary, the results of our experiments indicate that phosphorylation “status” of cofilin is a factor affecting the actin cytoskeleton organization and migration abilities of colon adenocarcinoma LS180 cells.  相似文献   

13.
Cochlear outer hair cells undergo reversible changes in shape when externally stimulated. This response, known as OHC motility, is a central component of the cochlear amplifier, the mechanism responsible for the high sensitivity of mammalian hearing. We report that actin depolymerization, as regulated by activation/inhibition of LIMK/cofilin-mediated pathways, has a pivotal role in OHC motility. LIMK-mediated cofilin phosphorylation, which inhibits the actin depolymerizing activity of this protein, increases both electromotile amplitude and total length of guinea pig OHCs. In contrast, a decrease in cofilin phosphorylation reduces both OHC electromotile amplitude and OHC length. Experiments with acetylcholine and lysophosphatidic acid indicate that the effects of these agents on OHC motility are associated with regulation of cofilin phosphorylation via different signaling cascades. On the other hand, nonlinear capacitance measurements confirmed that all observed changes in OHC motile response were independent of the performance of the motor protein prestin. Altogether, these results strongly support the hypothesis that the cytoskeleton has a major role in the regulation of OHC motility, and identify actin depolymerization as a key process for modulating cochlear amplification.  相似文献   

14.
Our understanding of the molecular events contributing to myogenic control of diameter in cerebral resistance arteries in response to changes in intravascular pressure, a fundamental mechanism regulating blood flow to the brain, is incomplete. Myosin light chain kinase and phosphatase activities are known to be increased and decreased, respectively, to augment phosphorylation of the 20-kDa regulatory light chain subunits (LC20) of myosin II, which permits cross-bridge cycling and force development. Here, we assessed the contribution of dynamic reorganization of the actin cytoskeleton and thin filament regulation to the myogenic response and serotonin-evoked constriction of pressurized rat middle cerebral arteries. Arterial diameter and the levels of phosphorylated LC20, calponin, caldesmon, cofilin, and HSP27, as well as G-actin content, were determined. A decline in G-actin content was observed following pressurization from 10 mm Hg to between 40 and 120 mm Hg and in three conditions in which myogenic or agonist-evoked constriction occurred in the absence of a detectable change in LC20 phosphorylation. No changes in thin filament protein phosphorylation were evident. Pressurization reduced G-actin content and elevated the levels of cofilin and HSP27 phosphorylation. Inhibitors of Rho-associated kinase and PKC prevented the decline in G-actin; reduced cofilin and HSP27 phosphoprotein content, respectively; and blocked the myogenic response. Furthermore, phosphorylation modulators of HSP27 and cofilin induced significant changes in arterial diameter and G-actin content of myogenically active arteries. Taken together, our findings suggest that dynamic reorganization of the cytoskeleton involving increased actin polymerization in response to Rho-associated kinase and PKC signaling contributes significantly to force generation in myogenic constriction of cerebral resistance arteries.  相似文献   

15.
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.  相似文献   

16.
Cyclic nucleotide can relax arterial smooth muscle without reductions in myosin regulatory light chain (MRLC) phosphorylation, a process termed force suppression. Smooth muscle contractile force also depends on tissue length. It is not known how tissue length affects force suppression. Swine carotid artery rings were equilibrated at various lengths (as a fraction of L(o), the optimal length for force development). They were then frozen during contractile activation with or without forskolin-induced relaxation. Frozen tissue homogenates were then analyzed for Ser(19)-MRLC phosphorylation and Ser(16)-heat shock protein 20 (HSP20) phosphorylation (HSP20 is the proposed mediator of force suppression). Higher values of MRLC phosphorylation were required to induce a histamine contraction at longer tissue lengths. At 1.4 L(o), the dependence of force on MRLC phosphorylation observed with histamine stimulation alone was shifted to the right, a response similar to that observed during force suppression at 1.0 L(o). The rightward shift in the dependence of force on MRLC phosphorylation seen with histamine stimulation alone at 1.4 L(o) was not associated with increased HSP20 phosphorylation. Addition of forskolin to histamine-stimulated tissues at 1.4 L(o) induced a relaxation associated with increased HSP20 phosphorylation and reduced MRLC phosphorylation, i.e., there was no additional force suppression. At shorter tissue lengths (0.6 L(o)), the dependence of force on MRLC phosphorylation with histamine stimulation alone was steep, a response similar to that observed during normal contractile activation at 1.0 L(o). Addition of forskolin induced force suppression at 0.6 L(o). The sensitivity of swine carotid to the concentration of histamine was greater at longer tissue lengths compared with shorter tissue lengths, suggesting a physiological mechanism to restore optimal tissue length. These data suggest that longer tissue lengths induced a force suppression-like state that was 1) not additive with forskolin and 2) not associated with HSP20 phosphorylation. Further research is required to determine this length-dependent mechanism.  相似文献   

17.
Cofilin mediates lamellipodium extension and polarized cell migration by stimulating actin filament dynamics at the leading edge of migrating cells. Cofilin is inactivated by phosphorylation at Ser-3 and reactivated by cofilin-phosphatase Slingshot-1L (SSH1L). Little is known of signaling mechanisms of cofilin activation and how this activation is spatially regulated. Here, we show that cofilin-phosphatase activity of SSH1L increases approximately 10-fold by association with actin filaments, which indicates that actin assembly at the leading edge per se triggers local activation of SSH1L and thereby stimulates cofilin-mediated actin turnover in lamellipodia. We also provide evidence that 14-3-3 proteins inhibit SSH1L activity, dependent on the phosphorylation of Ser-937 and Ser-978 of SSH1L. Stimulation of cells with neuregulin-1beta induced Ser-978 dephosphorylation, translocation of SSH1L onto F-actin-rich lamellipodia, and cofilin dephosphorylation. These findings suggest that SSH1L is locally activated by translocation to and association with F-actin in lamellipodia in response to neuregulin-1beta and 14-3-3 proteins negatively regulate SSH1L activity by sequestering it in the cytoplasm.  相似文献   

18.
The actin-depolymerizing factor (ADF)/cofilins are a family of essential actin regulatory proteins, ubiquitous among eukaryotes, that enhance the turnover of actin by regulating the rate constants of polymerization and depolymerization at filament ends, changing the twist of the filament and severing actin filaments. Genetic and cell-biological studies have shown that an ADF/cofilin is required to drive the high turnover of the actin cytoskeleton observed in vivo. The activity of ADF/cofilin is regulated by a variety of mechanisms, including specific phosphorylation and dephosphorylation. This review addresses aspects of ADF/cofilin structure, dynamics, regulation and function.  相似文献   

19.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

20.
The actin severing protein cofilin is essential for directed cell migration and chemotaxis, in many cell types and is also important for tumor cell invasion during metastasis. Through its severing activity, cofilin increases the number of free barbed ends to initiate actin polymerization for actin‐based protrusion in two distinct subcellular compartments in invasive tumor cells: lamellipodia and invadopodia. Cofilin severing activity is tightly regulated and multiple mechanisms are utilized to regulate cofilin activity. In this prospect, we have grouped the primary on/off regulation into two broad categories, both of which are important for inhibiting cofilin from binding to F‐actin or G‐actin: (1) Blocking cofilin activity by the binding of cofilin to either PI(4,5)P2 at lamellipodia, or cortactin at invadopodia. (2) Blocking cofilin's ability to bind to actin via serine phosphorylation. Although the literature suggests that these cofilin regulatory mechanisms may be cell‐type dependent, we propose the existence of a common cofilin activity cycle in which both operate. In this common cycle, the mechanism used to initiate cofilin activity is determined by the starting point in the cycle in a given subcellular compartment. J. Cell. Biochem. 108: 1252–1262, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号