首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Japanese encephalitis virus (JEV) core protein is detected not only in the cytoplasm but also in the nucleoli of infected cells. We previously showed that a mutant JEV lacking the nucleolar localization of the core protein impaired viral replication in mammalian cells. In this study, we identified a nucleolar phosphoprotein B23 as a protein binding with the core protein of JEV but not with that of dengue virus. The region binding with JEV core protein was mapped to amino acid residues 38 to 77 of B23. Upon JEV infection, some fraction of B23 was translocated from the nucleoli to the cytoplasm, and cytoplasmic B23 was colocalized with the core protein of wild-type JEV but not with that of the mutant JEV. Furthermore, overexpression of dominant negatives of B23 reduced JEV replication. These results suggest that B23 plays an important role in the intracellular localization of the core protein and replication of JEV.  相似文献   

2.
Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication.  相似文献   

3.
The flavivirus capsid protein not only is a component of nucleocapsids but also plays a role in viral replication. In this study, we found a small capsid protein in cells infected with Japanese encephalitis virus (JEV) but not in the viral particles. The small capsid protein was shown to be generated by processing with host cysteine protease cathepsin L. An in vitro cleavage assay revealed that cathepsin L cleaves the capsid protein between amino acid residues Lys(18) and Arg(19), which are well conserved among the mosquito-borne flaviviruses. A mutant JEV resistant to the cleavage of the capsid protein by cathepsin L was generated from an infectious cDNA clone of JEV by introducing a substitution in the cleavage site. The mutant JEV exhibited growth kinetics similar to those of the wild-type JEV in monkey (Vero), mosquito (C6/36), and porcine (PK15) cell lines, whereas replication of the mutant JEV in mouse macrophage (RAW264.7) and neuroblastoma (N18) cells was impaired. Furthermore, the neurovirulence and neuroinvasiveness of the mutant JEV to mice were lower than those of the wild-type JEV. These results suggest that the processing of the JEV capsid protein by cathepsin L plays a crucial role in the replication of JEV in neural and macrophage cells, which leads to the pathogenesis of JEV infection.  相似文献   

4.
Pu SY  Wu RH  Yang CC  Jao TM  Tsai MH  Wang JC  Lin HM  Chao YS  Yueh A 《Journal of virology》2011,85(6):2927-2941
Reverse genetics is a powerful tool to study single-stranded RNA viruses. Despite tremendous efforts having been made to improve the methodology for constructing flavivirus cDNAs, the cause of toxicity of flavivirus cDNAs in bacteria remains unknown. Here we performed mutational analysis studies to identify Escherichia coli promoter (ECP) sequences within nucleotides (nt) 1 to 3000 of the dengue virus type 2 (DENV2) and Japanese encephalitis virus (JEV) genomes. Eight and four active ECPs were demonstrated within nt 1 to 3000 of the DENV2 and JEV genomes, respectively, using fusion constructs containing DENV2 or JEV segments and empty vector reporter gene Renilla luciferase. Full-length DENV2 and JEV cDNAs were obtained by inserting mutations reducing their ECP activity in bacteria without altering amino acid sequences. A severe cytopathic effect occurred when BHK21 cells were transfected with in vitro-transcribed RNAs from either a DENV2 cDNA clone with multiple silent mutations within the prM-E-NS1 region of dengue genome or a JEV cDNA clone with an A-to-C mutation at nt 90 of the JEV genome. The virions derived from the DENV2 or JEV cDNA clone exhibited infectivities similar to those of their parental viruses in C6/36 and BHK21 cells. A cis-acting element essential for virus replication was revealed by introducing silent mutations into the central portion (nt 160 to 243) of the core gene of DENV2 infectious cDNA or a subgenomic DENV2 replicon clone. This novel strategy of constructing DENV2 and JEV infectious clones could be applied to other flaviviruses or pathogenic RNA viruses to facilitate research in virology, viral pathogenesis, and vaccine development.  相似文献   

5.
Japanese encephalitis virus (JEV) core protein was detected in both the nucleoli and cytoplasm of mammalian and insect cell lines infected with JEV or transfected with the expression plasmid of the core protein. Mutation analysis revealed that Gly(42) and Pro(43) in the core protein are essential for the nuclear and nucleolar localization. A mutant M4243 virus in which both Gly(42) and Pro(43) were replaced by Ala was recovered by plasmid-based reverse genetics. In C6/36 mosquito cells, the M4243 virus exhibited RNA replication and protein synthesis comparable to wild-type JEV, whereas propagation in Vero cells was impaired. The mutant core protein was detected in the cytoplasm but not in the nucleus of either C6/36 or Vero cell lines infected with the M4243 virus. The impaired propagation of M4243 in mammalian cells was recovered by the expression of wild-type core protein in trans but not by that of the mutant core protein. Although M4243 mutant virus exhibited a high level of neurovirulence comparable to wild-type JEV in spite of the approximately 100-fold-lower viral propagation after intracerebral inoculation to 3-week-old mice of strain Jcl:ICR, no virus was recovered from the brain after intraperitoneal inoculation of the mutant. These results indicate that nuclear localization of JEV core protein plays crucial roles not only in the replication in mammalian cells in vitro but also in the pathogenesis of encephalitis induced by JEV in vivo.  相似文献   

6.
Japanese encephalitis virus (JEV) has a single-stranded, positive-sense RNA genome containing a single open reading frame flanked by the 5′- and 3′-non-coding regions (NCRs). The virus genome replicates via a negative-sense RNA intermediate. The NCRs and their complementary sequences in the negative-sense RNA are the sites for assembly of the RNA replicase complex thereby regulating the RNA synthesis and virus replication. In this study, we show that the 55-kDa polypyrimidine tract-binding protein (PTB) interacts in vitro with both the 5′-NCR of the positive-sense genomic RNA - 5NCR(+), and its complementary sequence in the negative-sense replication intermediate RNA - 3NCR(-). The interaction of viral RNA with PTB was validated in infected cells by JEV RNA co-immunoprecipitation and JEV RNA-PTB colocalization experiments. Interestingly, we observed phosphorylation-coupled translocation of nuclear PTB to cytoplasmic foci that co-localized with JEV RNA early during JEV infection. Our studies employing the PTB silencing and over-expression in cultured cells established an inhibitory role of PTB in JEV replication. Using RNA-protein binding assay we show that PTB competitively inhibits association of JEV 3NCR(-) RNA with viral RNA-dependent RNA polymerase (NS5 protein), an event required for the synthesis of the plus-sense genomic RNA. cAMP is known to promote the Protein kinase A (PKA)-mediated PTB phosphorylation. We show that cells treated with a cAMP analogue had an enhanced level of phosphorylated PTB in the cytoplasm and a significantly suppressed JEV replication. Data presented here show a novel, cAMP-induced, PTB-mediated, innate host response that could effectively suppress JEV replication in mammalian cells.  相似文献   

7.
Flaviviral replication is believed to be exclusively cytoplasmic, occurring within virus-induced membrane-bound replication complexes in the host cytoplasm. Here we show that a significant proportion (20%) of the total RNA-dependent RNA polymerase (RdRp) activity from cells infected with West Nile virus, Japanese encephalitis virus (JEV), and dengue virus is resident within the nucleus. Consistent with this, the major replicase proteins NS3 and NS5 of JEV also localized within the nucleus. NS5 was found distributed throughout the nucleoplasm, but NS3 was present at sites of active flaviviral RNA synthesis, colocalizing with NS5, and visible as distinct foci along the inner periphery of the nucleus by confocal and immunoelectron microscopy. Both these viral replicase proteins were also present in the nuclear matrix, colocalizing with the peripheral lamina, and revealed a well-entrenched nuclear location for the viral replication complex. In keeping with this observation, antibodies to either NS3 or NS5 coimmunoprecipitated the other protein from isolated nuclei along with newly synthesized viral RNA. Taken together these data suggest an absolute requirement for both of the replicase proteins for nucleus-localized synthesis of flavivirus RNA. Thus, we conclusively demonstrate for the first time that the host cell nucleus functions as an additional site for the presence of functionally active flaviviral replicase complex.  相似文献   

8.
We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recognition motif (RRM) of recombinant hnRNP C1, suggesting that the binding is mediated by the RRM in the protein. We have also shown that in a glutathione S-transferase (GST) pull-down assay, GST/hnRNP C1 binds to poliovirus polypeptide 3CD, a precursor to the viral RNA-dependent RNA polymerase, 3D(pol), as well as to P2 and P3, precursors to the nonstructural proteins. Truncation of the auxiliary domain in hnRNP C1 (C1DeltaC) diminished these protein-protein interactions. When GST/hnRNP C1DeltaC was added to in vitro replication reactions, a significant reduction in RNA synthesis was observed in contrast to reactions supplemented with wild-type fusion protein. Indirect functional depletion of hnRNP C from in vitro replication reactions, using poliovirus negative-strand cloverleaf RNA, led to a decrease in RNA synthesis. The addition of GST/hnRNP C1 to the reactions rescued RNA synthesis to near mock-depleted levels. Furthermore, we demonstrated that poliovirus positive-strand and negative-strand RNA present in cytoplasmic extracts prepared from infected HeLa cells coimmunoprecipitated with hnRNP C1/C2. Our findings suggest that hnRNP C1 has a role in positive-strand RNA synthesis in poliovirus-infected cells, possibly at the level of initiation.  相似文献   

9.
10.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

11.
Japanese encephalitis virus (JEV), an enveloped Flavivirus with a positive-sense RNA genome, causes acute encephalitis with high mortality in humans. We used a virulent (RP-9) and an attenuated (RP-2ms) JEV strain to assess the role of autophagy in JEV infection. By monitoring the levels of lipidated LC3, we found that autophagy was induced in human NT-2 cells infected with RP-2ms, especially at the late stage, and to a lesser extent with RP-9. The induction of autophagy by rapamycin increased viral production, whereas the inhibition of autophagy by 3-methyladenine reduced viral yields for both RP-9 and RP-2ms. The viral replication of RP-9 and RP-2ms was also reduced in cells with downregulated ATG5 or Beclin 1 expression, suggesting a proviral role of autophagy in JEV replication. To determine the step of JEV life cycle affected by autophagy, we used an mCherry-LC3 fusion protein as the autophagosome marker. Little of no colocalization of LC3 puncta with dsRNA was noted, whereas the input JEV particles were targeted to autophagosomes stained positive for early endosome marker. Overall, we show for the first time that the cellular autophagy process is involved in JEV infection and the inoculated viral particles traffic to autophagosomes for subsequent steps of viral infection.  相似文献   

12.
Chien HL  Liao CL  Lin YL 《Journal of virology》2011,85(10):4698-4706
The untranslated regions (UTRs) located at the 5' and 3' ends of the Japanese encephalitis virus (JEV) genome, a positive-sense RNA, are involved in viral translation, the initiation of RNA synthesis, and the packaging of nascent virions. The cellular and viral proteins that participate in these processes are expected to interact with the UTRs. In this study, we used biotinylated RNA-protein pulldown and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses to identify that the far upstream element (FUSE) binding protein 1 (FBP1) binds with JEV 5' and 3' UTRs. The impact of FBP1 on JEV infection was determined in cells with altered FBP1 expression. JEV replication was enhanced by knockdown and reduced by the overexpression of FBP1, indicating a negative role for FBP1 in JEV infection. FBP1, a nuclear protein, was redistributed to the perinuclear region and appeared as cytoplasmic foci that partially colocalized with JEV RNA in the early stage of JEV infection. By using a JEV replicon reporter assay, FBP1 appeared to suppress JEV protein expression mediated by the 5' and 3' UTRs. Thus, we suggest that FBP1 binds with the JEV UTR RNA and functions as a host anti-JEV defense molecule by repressing viral protein expression.  相似文献   

13.
YC Tu  CY Yu  JJ Liang  E Lin  CL Liao  YL Lin 《Journal of virology》2012,86(19):10347-10358
Japanese encephalitis virus (JEV) is an enveloped flavivirus with a single-stranded, positive-sense RNA genome encoding three structural and seven nonstructural proteins. To date, the role of JEV nonstructural protein 2A (NS2A) in the viral life cycle is largely unknown. The interferon (IFN)-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) phosphorylates the eukaryotic translation initiation factor 2α subunit (eIF2α) after sensing viral RNA and results in global translation arrest as an important host antiviral defense response. In this study, we found that JEV NS2A could antagonize PKR-mediated growth inhibition in a galactose-inducible PKR-expressing yeast system. In human cells, PKR activation, eIF2α phosphorylation, and the subsequent translational inhibition and cell death triggered by dsRNA and IFN-α were also repressed by JEV NS2A. Moreover, among the four eIF2α kinases, NS2A specifically blocked the eIF2α phosphorylation mediated by PKR and attenuated the PKR-promoted cell death induced by the chemotherapeutic drug doxorubicin. A single point mutation of NS2A residue 33 from Thr to Ile (T33I) abolished the anti-PKR potential of JEV NS2A. The recombinant JEV mutant carrying the NS2A-T33I mutation showed reduced in vitro growth and in vivo virulence phenotypes. Thus, JEV NS2A has a novel function in blocking the host antiviral response of PKR during JEV infection.  相似文献   

14.
Few details are known about how the human immunodeficiency virus type 1 (HIV-1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV-1-expressing cells results in the rapid accumulation of HIV-1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule-organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2-response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7-interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV-1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV-1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.  相似文献   

15.
Wang K  Deubel V 《PloS one》2011,6(9):e24744

Background

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that causes public health problems in Asian countries. Only a limited number of JEV-infected individuals show symptoms and develop severe encephalitis, indicating host-dependent susceptibilities.

Methodology/Principal Findings

C3H/HeN and DBA/2 mice, which exhibit different mortalities when infected by intraperitoneal inoculation with JEV, were used as experimental models to compare viral pathogenesis and host responses. One hundred infectious virus particles killed 95% of C3H/HeN mice whereas only 40% of DBA/2 mice died. JEV RNA was detected with similar low levels in peripheral lymphoid organs and in the sera of both mouse strains. High levels of viral and cytokine RNA were observed simultaneously in the brains of C3H/HeN and DBA/2 mice starting on days 6 and 9 post-infection, respectively. The kinetics of the cytokines in sera correlated with the viral replication in the brain. Significantly earlier and higher titers of neutralizing antibodies were detected in the DBA/2 strain. Primary embryonic fibroblasts, bone marrow-derived dendritic cells and macrophages from the two mouse strains were cultured. Fibroblasts displayed similar JEV replication abilities, whereas DBA/2-derived myeloid antigen-presenting cells had lower viral infectivity and production compared to the C3H/HeN–derived cells.

Conclusions/Significance

Mice with different susceptibilities to JEV neuroinvasion did not show changes in viral tropism and host innate immune responses prior to viral entry into the central nervous system. However, early and high neutralizing antibody responses may be crucial for preventing viral neuroinvasion and host fatality. In addition, low permissiveness of myeloid dendritic cells and macrophages to JEV infection in vitro may be elements associated with late and decreased mouse neuroinvasion.  相似文献   

16.
Lin KC  Chang HL  Chang RY 《Journal of virology》2004,78(10):5133-5138
Japanese encephalitis virus (JEV) contains a single positive-strand RNA genome nearly 11 kb in length and is not formally thought to generate subgenomic RNA molecules during replication. Here, we report the abundant accumulation of a 3'-terminal 521- to 523-nucleotide (nt) genome fragment, representing a major portion of the 585-nt 3' untranslated region, in both mammalian (BHK-21) and mosquito (C6/36) cells infected with any of nine strains of JEV. In BHK-21 cells, the viral genome was detected as early as 24 h postinfection, the small RNA was detected as early as 28 h postinfection, and the small RNA was 0.25 to 1.5 times as abundant as the genome on a molar basis between 28 and 48 h postinfection. In C6/36 cells, the genome and small RNA were present 5 days postinfection and the small RNA was 1.25 to 5.14 times as abundant as the genome. The 3'-terminal 523-nt small RNA contains a 5'-proximal stable hairpin (nt 6 to 56) that may play a role in its formation and the conserved flavivirus 3'-cyclization motif (nt 413 to 420) and the 3'-terminal long stable hairpin structure (nt 440 to 523) that have postulated roles in genome replication. Abundant accumulation of the small RNA during viral replication in both mammalian and mosquito cells suggests that it may play a biological role, perhaps as a regulator of RNA synthesis.  相似文献   

17.
Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.  相似文献   

18.
Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses. To identify the cellular factors involved in HCV replication, we searched for cellular proteins that interact with the NS5b protein. HnRNP A1 and septin 6 proteins were identified by coimmunoprecipitation and yeast two-hybrid screening, respectively. Interestingly, septin 6 protein also interacts with hnRNP A1. Moreover, hnRNP A1 interacts with the 5'-nontranslated region (5' NTR) and the 3' NTR of HCV RNA containing the cis-acting elements required for replication. Knockdown of hnRNP A1 and overexpression of C-terminally truncated hnRNP A1 reduced HCV replication. In addition, knockdown of septin 6 and overexpression of N-terminally truncated septin 6 inhibited HCV replication. These results indicate that the host proteins hnRNP A1 and septin 6 play important roles in the replication of HCV through RNA-protein and protein-protein interactions.  相似文献   

19.
Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.  相似文献   

20.
The antiviral effects of nitric oxide (NO) on Japanese encephalitis virus (JEV), a member of the family Flaviviridae, were investigated in this study. In vitro, inhibition of replication of JEV in gamma interferon-activated RAW 264.7 murine macrophages was correlated to cellular NO production. When cocultured with infected murine neuroblastoma N18 cells, gamma interferon-activated RAW 264.7 cells also efficiently hindered JEV replication in contiguous bystanders, and this anti-JEV effect could be reversed by an NO synthase (NOS) inhibitor, N-monomethyl-L-arginine acetate. In vivo, the mortality rate increased as the NOS activity of JEV-infected mice was inhibited by its competitive inhibitor, N-nitro-L-arginine methyl ester. Moreover, when an organic donor, S-nitro-N-acetylpenicillamine (SNAP), was used, the NO-mediated antiviral effect was also observed in primarily JEV-infected N18, human neuronal NT-2, and BHK-21 cells, as well as in persistently JEV-infected C2-2 cells. These data reaffirm that NO has an effective and broad-spectrum antimicrobial activity against diversified intracellular pathogens. Interestingly, the antiviral effect of NO was not enhanced by treatment of N18 cells with SNAP prior to JEV infection, a measure which has been shown to greatly increase the antiviral effect of NO in infection by vesicular stomatitis virus. From biochemical analysis of the impact of NO on JEV replication in cell culture, NO was found to profoundly inhibit viral RNA synthesis, viral protein accumulation, and virus release from infected cells. The results herein thus suggest that NO may play a crucial role in the innate immunity of the host to restrict the initial stage of JEV infection in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号