首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

2.
We tested whether the responsiveness of the kidney to basal renal sympathetic nerve activity (RSNA) or hypoxia-induced reflex increases in RSNA, is enhanced in angiotensin-dependent hypertension in rabbits. Mean arterial pressure, measured in conscious rabbits, was similarly increased (+16 +/- 3 mmHg) 4 wk after clipping the left (n = 6) or right (n = 5) renal artery or commencing a subcutaneous ANG II infusion (n = 9) but was not increased after sham surgery (n = 10). Under pentobarbital sodium anesthesia, reflex increases in RSNA (51 +/- 7%) and whole body norepinephrine spillover (90 +/- 17%), and the reductions in glomerular filtration rate (-27 +/- 5%), urine flow (-43 +/- 7%), sodium excretion (-40 +/- 7%), and renal cortical perfusion (-7 +/- 3%) produced by hypoxia were similar in normotensive and hypertensive groups. Hypoxia-induced increases in renal norepinephrine spillover tended to be less in hypertensive (1.1 +/- 0.5 ng/min) than normotensive (3.7 +/- 1.2 ng/min) rabbits, but basal overflow of endogenous and exogenous dihydroxyphenolglycol was greater. Renal plasma renin activity (PRA) overflow increased less in hypertensive (22 +/- 29 ng/min) than normotensive rabbits (253 +/- 88 ng/min) during hypoxia. Acute renal denervation did not alter renal hemodynamics or excretory function but reduced renal PRA overflow. Renal vascular and excretory responses to reflex increases in RSNA induced by hypoxia are relatively normal in angiotensin-dependent hypertension, possibly due to the combined effects of reduced neural norepinephrine release and increased postjunctional reactivity. In contrast, neurally mediated renin release is attenuated. These findings do not support the hypothesis that enhanced neural control of renal function contributes to maintenance of hypertension associated with activation of the renin-angiotensin system.  相似文献   

3.
The neuromodulatory effect of NO on glutamatergic transmission has been studied in several brain areas. Our previous single-cell studies suggested that NO facilitates glutamatergic transmission in the nucleus of the solitary tract (NTS). In this study, we examined the effect of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on glutamatergic and reflex transmission in the NTS. We measured mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) from Inactin-anesthetized Sprague-Dawley rats. Bilateral microinjections of L-NAME (10 nmol/100 nl) into the NTS did not cause significant changes in basal MAP, HR, or RSNA. Unilateral microinjection of (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA, 1 pmol/100 nl) into the NTS decreased MAP and RSNA. Fifteen minutes after L-NAME microinjections, AMPA-evoked cardiovascular changes were significantly reduced. N-methyl-D-aspartate (NMDA, 0.5 pmol/100 nl) microinjection into the NTS decreased MAP, HR, and RSNA. NMDA-evoked falls in MAP, HR, and RSNA were significantly reduced 30 min after L-NAME. To examine baroreceptor and cardiopulmonary reflex function, L-NAME was microinjected at multiple sites within the rostro-caudal extent of the NTS. Baroreflex function was tested with phenylephrine (PE, 25 microg iv) before and after L-NAME. Five minutes after L-NAME the decrease in RSNA caused by PE was significantly reduced. To examine cardiopulmonary reflex function, phenylbiguanide (PBG, 8 microg/kg) was injected into the right atrium. PBG-evoked hypotension, bradycardia, and RSNA reduction were significantly attenuated 5 min after L-NAME. Our results indicate that inhibition of NOS within the NTS attenuates baro- and cardiopulmonary reflexes, suggesting that NO plays a physiologically significant neuromodulatory role in cardiovascular regulation.  相似文献   

4.
We investigated the effects of diabetes mellitus and antioxidant treatment on the sensory and reflex function of cardiac chemosensory nerves in rats. Diabetes was induced by streptozotocin (STZ; 85 mg/kg ip). Subgroups of sham- and STZ-treated rats were chronically treated with an antioxidant, vitamin E (60 mg/kg per os daily, started 2 days before STZ). Animals were studied 6-8 wk after STZ injection. We measured renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MABP), and cardiac vagal and sympathetic afferent activities in response to stimulation of chemosensitive sensory nerves in the heart by epicardial application of capsaicin (Caps) and bradykinin (BK). In cardiac sympathetic-denervated rats, Caps and BK (1-10.0 microg) evoked a vagal afferent mediated reflex depression of RSNA and MABP, which was significantly blunted in STZ-treated rats (P < 0.05). In vagal-denervated rats, Caps and BK (1-10.0 microg) evoked a sympathetic afferent-mediated reflex elevation of RSNA and MABP, which also was significantly blunted in STZ-treated rats (P < 0.05). Chronic vitamin E treatment effectively prevented these cardiac chemoreflex defects in STZ-treated rats without altering resting blood glucose or hemodynamics. STZ-treated rats with insulin replacement did not exhibit impaired cardiac chemoreflexes. In afferent studies, Caps and BK (0.1 g-10.0 microg) increased cardiac vagal and sympathetic afferent nerve activity in a dose-dependent manner in sham-treated rats. These responses were significantly blunted in STZ-treated rats. Vitamin E prevented the impairment of afferent discharge to chemical stimulation in STZ rats. The following were concluded: STZ-induced, insulin-dependent diabetes in rats extensively impairs the sensory and reflex properties of cardiac chemosensitive nerve endings, and these disturbances can be prevented by chronic treatment with vitamin E. These results suggest that oxidative stress plays an important role in the neuropathy of this autonomic reflex in diabetes.  相似文献   

5.
We have developed a system for long-term continuous monitoring of cardiovascular parameters in rabbits living in their home cage to assess what role renal sympathetic nerve activity (RSNA) has in regulating renal blood flow (RBF) in daily life. Blood pressure, heart rate, locomotor activity, RSNA, and RBF were recorded continuously for 4 wk. Beginning 4-5 days after surgery a circadian rhythm, dependent on feeding time, was observed. When averaged over all days RBF to the innervated and denervated kidneys was not significantly different. However, control of RBF around these mean levels was dependent on the presence of the renal sympathetic nerves. In particular we observed episodic elevations in heart rate and other parameters associated with activity. In the denervated kidney, during these episodic elevations, the increase in renal resistance was closely related to the increase in arterial pressure. In the innervated kidney the renal resistance response was significantly more variable, indicating an interaction of the sympathetic nervous system. These results indicate that whereas overall levels of RSNA do not set the mean level of RBF the renal vasculature is sensitive to episodic increases in sympathetic nerve activity.  相似文献   

6.
The autonomic nervous system plays an important role in rat anaphylactic hypotension. It is well known that sympathetic nerve activity and cardiovascular function are affected by anesthetics. However, the effects of different types of anesthesia on the efferent renal sympathetic nerve activity (RSNA) during anaphylactic hypotension remain unknown. Therefore, we determined the renal sympathetic responses to anaphylactic hypotension in anesthetized and conscious rats and the roles of baroreceptors in these responses. Sprague-Dawley rats were randomly allocated to anesthetic groups that were given pentobarbital, urethane, or ketamine-xylazine and to a conscious group. The rats were sensitized using subcutaneously injected ovalbumin. The systemic arterial pressure (SAP), RSNA and heart rate (HR) were measured. The effects of sinoaortic baroreceptor denervation on RSNA during anaphylaxis were determined in pentobarbital-anesthetized and conscious rats. In all of the sensitized rats, the RSNA increased and SAP decreased after antigen injection. At the early phase within 35 min of the antigen injection, the antigen-induced sympathoexcitation in the conscious rats was significantly greater than that in the anesthetized rats. Anaphylactic hypotension was attenuated in the conscious rats compared to the anesthetized rats. The anesthetic-induced suppression of SAP and RSNA was greater in the order ketamine-xylazine >urethane = pentobarbital. Indeed, in the rats treated with ketamine-xylazine, RSNA did not increase until 40 min, and SAP remained at low levels after the antigen injection. The baroreceptor reflex, as evaluated by increases in RSNA and HR in response to the decrease in SAP induced by sodium nitroprusside (SNP), was suppressed in the anesthetized rats compared with the conscious rats. Consistent with this finding, baroreceptor denervation attenuated the excitatory responses of RSNA to anaphylaxis in the conscious rats but not in the pentobarbital-anesthetized rats. RSNA was increased markedly in conscious rats during anaphylactic hypotension. Anesthetics attenuated this antigen-induced renal sympathoexcitation through the suppression of baroreceptor function.  相似文献   

7.
心力衰竭状态下的动脉压力感受器反射   总被引:3,自引:0,他引:3  
Wang W  Zhu GQ  Gao L  Tan W  Qian ZM 《生理学报》2004,56(3):269-281
心力衰竭是以心脏泵血功能降低(心输出量减少)为始动因素的临床综合征。心输出量降低首先引起动脉压力感受性反射失负荷,进而通过迷走-交感机制加快心率;同时,支配血管床的交感传出活动增强,进而增加总外周阻力。本文主要论述在心力衰竭状态下压力感受性反射在循环功能异常调控中的作用机制。本综述及我们近年的研究表明:(1)在心力衰竭状态下压力感受性反射功能明显减弱;(2)中枢血管紧张素Ⅱ和活性氧在压力感受性反射功能失调中发挥关键作用;(3)心交感传入刺激和化学感受性反射能抑制压力感受性反射;(4)适当的运动可以部分纠正异常的心血管反射活动。  相似文献   

8.
Stimulation of cardiac receptors (CR) evokes blunted reflex reductions in mean arterial pressure (MAP) in pregnant compared with virgin rats. Because CR-mediated sympathoinhibition has preferential effects on the kidney, we tested whether, during pregnancy, renal vascular resistance (RVR) changes less in response to CR stimulation and investigated possible mechanisms. MAP, right atrial pressure, renal sympathetic nerve activity (RSNA), renal blood flow (RBF), and RVR were measured in anesthetized animals in response to CR stimulation by graded atrial injections of saline. Baseline MAP and RVR and reflex changes in these variables during CR stimulation were reduced in late-pregnant vs. virgin rats (P<0.05). Reflex changes in RSNA were attenuated in pregnant rats, but changes in RBF as a function of RSNA were similar in both groups. ANG II AT(1)-receptor blockade increased basal RBF more in virgin rats (P<0.05), but between-group differences in reflex changes in MAP, RSNA, and RVR were maintained after AT(1) blockade. Thus during CR simulation, reflex changes in RVR were reduced in pregnant versus virgin rats. This difference does not appear to involve differential effects of ANG II.  相似文献   

9.
Stellate ganglion blockade (SGB) with a local anesthetic increases muscle sympathetic nerve activity in the tibial nerve in humans. However, whether this sympathetic excitation in the tibial nerve is due to a sympathetic blockade in the neck itself, or due to infiltration of a local anesthetic to adjacent nerves including the vagus nerve remains unknown. To rule out one mechanism, we examined the effects of cervical sympathetic trunk transection on renal sympathetic nerve activity (RSNA) in anesthetized rats. Seven rats were anesthetized with intraperitoneal urethane. RSNA together with arterial blood pressure and heart rate were recorded for 15 min before and 30 min after left cervical sympathetic trunk transection. The baroreceptor unloading RSNA obtained by decreasing arterial blood pressure with administration of sodium nitroprusside was also measured. Left cervical sympathetic trunk transection did not have any significant effects on RSNA, baroreceptor unloading RSNA, arterial blood pressure, and heart rate. These data suggest that there was no compensatory increase in RSNA when cervical sympathetic trunk was transected and that the increase in sympathetic nerve activity in the tibial nerve during SGB in humans may result from infiltration of a local anesthetic to adjacent nerves rather than a sympathetic blockade in the neck itself.  相似文献   

10.
Arterial baroreceptor reflex control of renal sympathetic nerve activity (RSNA) has been proposed to play a role in long-term control of arterial pressure. The hypothesis that the "set point" of the acute RSNA baroreflex curve determines the long-term level of arterial pressure is presented and challenged. Contrary to the hypothesis, studies on the long-term effects of sinoaortic denervation (SAD) on arterial pressure and RSNA, as well as more recent studies of chronic baroreceptor "unloading" on arterial pressure, suggest that the basal levels of sympathetic nerve activity and arterial pressure are regulated independent of arterial baroreceptor input to the brainstem. Studies of the effect of SAD on the long-term salt sensitivity of arterial pressure are consistent with a short-term role, rather than a long-term role for the arterial baroreceptor reflex in regulation of arterial pressure during changes in dietary salt intake. Renal denervation studies suggest that renal nerves contribute to maintenance of the basal levels of arterial pressure. However, evidence that baroreflex control of the kidney plays a role in the maintenance of arterial pressure during changes in dietary salt intake is lacking. It is proposed that a "baroreflex-independent" sympathetic control system must exist for the long-term regulation of sympathetic nerve activity and arterial pressure. The concept of a central nervous system "set point" for long-term control of mean arterial pressure (CNS-MAP set point), and its involvement in the pathogenesis of hypertension, is discussed.  相似文献   

11.
李智  何瑞荣 《生理学报》1989,41(4):328-337
对81只麻醉兔,在静脉注射新福林和硝普钠升降血压而改变动脉压力感受器活动的条件下,观察心率,后肢血管阻力和肾交感神经活动的反射性变化。主要结果如下:(1) 由新福林升高血压时,心率减慢、后肢血管阻力降低和肾交感神经活动抑制;硝普钠降低血压时引起相反效应。各指标的反射性变化有良好的可重复性。(2) 切断两侧减压神经或切断两侧窦神经后,静注新福林和硝普钠诱发的心率反射性变化均显著减弱(P<0.01);切断两侧减压神经较切断两侧窦神经后减弱得更为明显,其中对于新福林升压时的心率减慢反应差异显著(P<(0.05)。相反,对于新福林和硝普钠引起的后肢血管阻力反射性变化,与缓冲神经部分切断之前相比无明显差异;在对照肾交感神经活动已增高的基础上,硝普钠降压时肾交感神经活动的反射性兴奋效应降低,而新福林升压时的肾交感神经活动反射性抑制效应与神经切断前相比无明显差异。(3) 缓冲神经全部切断(SAD)后,新福林和硝普钠引起的平均动脉血压(MAP)变动幅度显著增大(P<0.05)。此时心率、后肢血管阻力和肾交感神经活动的反射调节效应均明显减弱(P<0.001)。(4) 进一步切断两侧迷走神经后,残留的反射效应即行消失。 以上结果表明,颈动脉窦和主动脉弓压力感受器传入以单纯相加的方式对心率进行反射性调节,以主  相似文献   

12.
Denervation supersensitivity in chronically denervated kidneys increases renal responsiveness to increased plasma levels of norepinephrine. To determine whether this effect is caused by presynaptic (i.e., loss of uptake) or postsynaptic changes, we studied the effect of continuous infusion of norepinephrine (330 ng/min, i.v.) and methoxamine (4 micrograms/min, i.v.), an alpha 1-adrenergic agonist that is not taken up by nerve terminals, on renal function of innervated and denervated kidneys. Ganglionic blockade was used to eliminate reflex adjustments in the innervated kidney and mean arterial pressure was maintained at preganglionic blockade levels by an infusion of arginine vasopressin. With renal perfusion pressure controlled there was a significantly greater decrease in renal blood flow (-67 +/- 9 vs. -33 +/- 8%), glomerular filtration rate (-60 +/- 9 vs. -7 +/- 20%), urine flow (-61 +/- 7 vs. -24 +/- 11%), sodium excretion (-51 +/- 15 vs. -32 +/- 21%), and fractional excretion of sodium (-50 +/- 9 vs. -25 +/- 15%) from the denervated kidneys compared with the innervated kidneys during the infusion of norepinephrine. During the infusion of methoxamine there was a significantly greater decrease from the denervated compared with the innervated kidneys in renal blood flow (-54 +/- 10 vs. -30 +/- 14%), glomerular filtration rate (-51 +/- 11 vs. -19 +/- 17%), urine flow (-55 +/- 10 vs. -39 +/- 10%), sodium excretion (-70 +/- 9 vs. -59 +/- 11%), and fractional excretion of sodium (-53 +/- 10 vs. -41 +/- 10%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of acute emotional stress on the sympathetic component of the arterial baroreceptor reflex have not yet been described in conscious animals and humans. Arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 11 conscious rats before and during exposure to a mild environmental stressor (jet of air). Baroreflex function curves relating AP and RSNA were constructed by fitting a sigmoid function to RSNA and AP measured during sequential nitroprusside and phenylephrine administrations. Stress increased mean AP from 112 +/- 2 to 124 +/- 2 mmHg, heart rate from 381 +/- 10 to 438 +/- 18 beats/min, and RSNA from 0.80 +/- 0.14 to 1.49 +/- 0.23 microV. The RSNA-AP relationship was shifted toward higher AP values, and its maximum gain was significantly (P < 0.01) increased from 9.0 +/- 1.3 to 16.2 +/- 2.1 normalized units (NU)/mmHg. The latter effect was secondary to an increase (P < 0.01) in the range of the RSNA variation from 285 +/- 33 to 619 +/- 59 NU. In addition, the operating range of the reflex was increased (P < 0.01) from 34 +/- 2 to 41 +/- 3 mmHg. The present study indicates that in rats, the baroreflex control of RSNA is sensitized and operates over a larger range during emotional stress, which suggests that renal vascular tone, and possibly AP, are very efficiently controlled by the sympathetic nervous system under this condition.  相似文献   

14.
The effects of inhibiting the neural activity in the pontine A5 region on renal sympathetic responses to baroreflex and/or chemoreflex activation were examined in conscious rabbits. Eight rabbits were chronically instrumented with guide cannulas for bilateral microinjections into the A5 area and an electrode for measuring renal sympathetic nerve activity (RSNA). Baroreflex curves were obtained under conditions of normoxia and hypoxia (10% O(2) + 3% CO(2)) after injections into the A5 region of the GABA receptor agonist muscimol or vehicle solution. Under normoxia, injections of muscimol did not affect resting RSNA or blood pressure but increased the range of the RSNA baroreflex by 24 and 33% at doses of 175 or 875 pmol, respectively, without affecting the reflex gain. Hypoxia alone increased resting RSNA by 63%, as well as the range and gain of the RSNA baroreflex by 53 and 89%, respectively, without affecting blood pressure. However, under hypoxia, muscimol increased resting RSNA by 37 and 47% but decreased the gain of the RSNA baroreflex by 19 and 34% at doses of 175 or 875 pmol, respectively, without affecting the reflex range. The effects of muscimol on RSNA were mediated via changes in the amplitude of the sympathetic bursts, whereas burst frequency remained unaffected. These data suggest that the A5 region has a little tonic influence on RSNA in conscious rabbits but serves to limit the renal sympathetic responses to baroreceptor unloading or chemoreceptor stimulation. The different changes in the baroreflex range and gain evoked by muscimol under normoxia and hypoxia indicate that the A5 modulatory action may depend on the activity of the afferent inputs to this region.  相似文献   

15.
The contribution of alpha(2)-receptor mechanisms in the rostral ventrolateral medulla (RVLM) in mediating the enhanced renal excretory responses evoked by the intravenous infusion of the alpha(2)-receptor agonist xylazine was examined in ketamine-anesthetized rats. In ketamine-anesthetized rats, the bilateral microinjection of the alpha(2)-receptor antagonist yohimbine into the RVLM significantly reduced the enhanced levels of urine flow rate (V) and urinary sodium excretion (UNaV) produced by xylazine. In contrast, microinjection of yohimbine into the RVLM of chronically bilaterally renal-denervated rats significantly reduced the xylazine-evoked diuretic, but not natriuretic, response. In separate ketamine-anesthetized rats, intravenous xylazine infusion produced a near complete inhibition of renal sympathetic nerve activity (RSNA). The subsequent microinjection of yohimbine into the RVLM reversed this neural response and concurrently decreased V and UNaV. Together, these results indicate that during intravenous infusion, xylazine activates alpha(2)-receptor mechanisms in the RVLM to selectively promote urinary sodium excretion by a renal nerve-dependent pathway. In contrast, activation of alpha(2)-receptor in the RVLM affects the renal handling of water by a pathway independent of the renal nerves. This latter pathway may involve an interaction with other brain regions involved in antidiuretic hormone release (e.g., paraventricular nucleus of the hypothalamus).  相似文献   

16.
Gan XB  Duan YC  Xiong XQ  Li P  Cui BP  Gao XY  Zhu GQ 《PloS one》2011,6(10):e25784

Background

Cardiac sympathetic afferent reflex (CSAR) contributes to sympathetic activation and angiotensin II (Ang II) in paraventricular nucleus (PVN) augments the CSAR in vagotomized (VT) and baroreceptor denervated (BD) rats with chronic heart failure (CHF). This study was designed to determine whether it is true in intact (INT) rats with CHF and to determine the effects of cardiac and baroreceptor afferents on the CSAR and sympathetic activity in CHF.

Methodology/Principal Findings

Sham-operated (Sham) or coronary ligation-induced CHF rats were respectively subjected to BD+VT, VT, cardiac sympathetic denervation (CSD) or INT. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded, and the CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Either CSAR or the responses of RSNA, MAP and CSAR to Ang II in PVN were enhanced in CHF rats treated with BD+VT, VT or INT. Treatment with VT or BD+VT potentiated the CSAR and the CSAR responses to Ang II in both Sham and CHF rats. Treatment with CSD reversed the capsaicin-induced RSNA and MAP changes and the CSAR responses to Ang II in both Sham and CHF rats, and reduced the RSNA and MAP responses to Ang II only in CHF rats.

Conclusions

The CSAR and the CSAR responses to Ang II in PVN are enhanced in intact CHF rats. Baroreceptor and vagal afferent activities inhibit CSAR and the CSAR responses to Ang II in intact Sham and CHF rats.  相似文献   

17.
Spinal cord injury causes debilitating cardiovascular disturbances. The etiology of these disturbances remains obscure, partly because the locations of spinal cord pathways important for sympathetic control of cardiovascular function have not been thoroughly studied. To elucidate these pathways, we examined regions of the thoracic spinal cord important for reflex sympathetic control of arterial pressure (AP). In anesthetized rats, baroreceptor relationships between pharmacologically induced changes in AP and changes in left renal sympathetic nerve activity (RSNA) were generated in spinally intact rats and after acute surgical hemisection of either the dorsal, left, or right T8 spinal cord. None of these individual spinal lesions prevented the baroreceptor-mediated increases in RSNA caused by decreases in AP. Thus, baroreceptor-mediated increases in RSNA in rats are mediated by relatively diffuse, bilateral, descending, excitatory projections. The ability to reduce RSNA at increased AP was impaired after both dorsal and left hemisections, and baroreceptor gain was significantly decreased. Baroreceptor-induced maximum decreases in RSNA were not affected by right hemisections. However, baroreflex gain was impaired. Because both dorsal and left hemisections, but not right hemisections, attenuated the decrease in RSNA at elevated AP, we conclude that pathways involved in the tonic inhibition of spinal sources of sympathetic activity descend ipsilaterally in the dorsal spinal cord. Our results show that many lesions that do not fully transect the spinal cord spare portions of both descending excitatory pathways that may prevent orthostatic hypotension and descending inhibitory pathways that reduce the incidence of autonomic dysreflexia.  相似文献   

18.
兔肾性高血压时的动脉压力感受器反射   总被引:1,自引:1,他引:0  
李智  何瑞荣 《生理学报》1989,41(4):338-345
14只雄性家兔在双肾缩扎术后12周,经氨基甲酸乙酯静脉麻醉,分别在缓冲神经完整、切断两侧减压神经或切断两侧窦神经后静注新福林或硝普钠升降血压以改变动脉压力感受器活动,观察其心率、后肢血管阻力和肾交感神经活动的反射性变化,并与正常血压兔的反射效应相比较。主要结果如下:(1) 动物双肾动脉缩扎后12周,平均动脉血压(131±9mmHg)较正常动物血压(95±10mmHg)有显著升高(P<0.001);(2) 缓冲神经完整时,新福林和硝普钠升降血压诱发的心率反射性变化与正常血压动物相比显著减弱(P<0.001),而后肢血管阻力和肾交感神经活动的反射性调节无明显改变,表明肾性高血压动物的心率反射性调节与外周循环的反射性调节机能不相平行;而由股动脉内直接注射新福林或硝普钠时,股动脉灌流压的增减幅度与正常血压动物相比并无明显差异;(3) 切断两侧减压神经或切断两侧窦神经后,在正常动物仅使反射性心率调节作用减弱,而后肢血管阻力和肾交感神经活动的反射性调节无明显改变;但在高血压动物,除心率的反射性调节进一步减弱外,新福林和硝普钠升降血压时后肢血管阻力和肾交感神经活动的反射性调节效应也显著地减弱(P<0.001),提示肾性高血压时动脉压力感受器反射的潜在调节能力降低。由此似表明,肾性高血压时动脉压力感受器反射  相似文献   

19.
It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent growth. To examine this hypothesis, arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were monitored during horizontal linear acceleration and performance in a motor coordination task in rats born and reared in 1-G or 2-G environments. Linear acceleration of +/-1 G increased AP and RSNA. These responses were attenuated in rats with a vestibular lesion, suggesting that the vestibular system mediated AP and RSNA responses. These responses were also attenuated in rats born in a 2-G environment. AP and RSNA responses were partially restored in these rats when the hypergravity load was removed, and the rats were maintained in a 1-G environment for 1 wk. The AP response to compressed air, which is mediated independently of the vestibular system, did not change in the 2-G environment. Motor coordination was also impaired in the 2-G environment and remained impaired even after 1 wk of unloading. These results indicate that hypergravity impaired both the vestibulo-cardiovascular reflex and motor coordination. The vestibulo-cardiovascular reflex was only impaired temporarily and partially recovered following 1 wk of unloading. In contrast, motor coordination did not return to normal in response to unloading.  相似文献   

20.
Experiments were performed to determine the effects of glucocorticoids on arterial baroreceptor reflex control of renal sympathetic nerve activity (RSNA). Intravenous infusions of phenylephrine and nitroprusside were used to produce graded changes in arterial pressure (AP) in Inactin-anesthetized male Sprague-Dawley rats. Baroreflex control of RSNA was determined during a baseline period and 2 and 3 h after administration of the glucocorticoid type II receptor antagonist Mifepristone (30 mg/kg sc) or vehicle (oil). Corticosterone (cort) treatment (100 mg cort pellet sc for 2-3 wk) increased baseline AP from 115 +/- 2 to 128 +/- 1 mmHg. Cort treatment also decreased the gain coefficient and increased the midpoint of the baroreflex curve. Treatment of cort rats with Mifepristone decreased AP within 2 h and increased the gain coefficient and decreased the midpoint of the baroreflex function curve back toward values measured in control rats. Mifepristone altered the baroreflex function curve even when AP was maintained at baseline levels. Therefore, these data demonstrate for the first time that glucocorticoids can modulate baroreflex control of RSNA by a mechanism that is, in part, independent of changes in AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号