首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Dyes belonging to the mono-, di-, tri- and poly-azo as well as anthraquinonic and mono-azo Cr-complexed classes, chosen among the most utilized in textile applications, were employed for a comparative enzymatic decolorization study using the extracellular crude culture extracts from the white rot fungus Funalia (Trametes) trogii grown on different culture media and activators able to trigger different levels of expression of oxidizing enzymes: laccase and cellobiose dehydrogenase. Laccase containing extracts were capable to decolorize some dyes from all the different classes analyzed, whereas the recalcitrant dyes were subjected to the combined action of laccase and the chemical mediator HBT, or laccase plus cellobiose dehydrogenase. Correlations among the decolorization degree of the various dyes and their electronic and structural diversities were rationalized and discussed. The utilization of cellobiose dehydrogenase in support to the activity of laccase for the decolorization of azo textile dyes resulted in substantial increases in decolorization for all the refractory dyes proving to be a valid alternative to more expensive and less environmentally friendly chemical treatments of textile dyes wastes.  相似文献   

2.
Phenolic Azo Dye Oxidation by Laccase from Pyricularia oryzae   总被引:2,自引:0,他引:2       下载免费PDF全文
Laccase oxidation of phenolic azo dyes was examined with a commercially available laccase from Pyricularia oryzae as the model. Methyl-, methoxy-, chloro-, and nitro-substituted derivatives of 4-(4(prm1)-sulfophenylazo)-phenol were examined as substrates for this laccase. Only the substituents on the phenolic ring were changed. Among the dyes examined, only 2-methyl-, 2-methoxy-, 2,3-dimethyl-, 2,6-dimethyl-, 2,3-dimethoxy-, and 2,6-dimethoxy-substituted 4-(4(prm1)-sulfophenylazo)-phenol served as substrates. Preliminary kinetic studies suggest that 2,6-dimethoxy-substituted 4-(4(prm1)-sulfophenylazo)-phenol is the best substrate. Laccase oxidized the 2,6-dimethyl derivative of 4-(4(prm1)-sulfophenylazo)-phenol to 4-sulfophenylhydroperoxide (SPH) and 2,6-dimethyl-1,4-benzoquinone. The 2-methyl- and 2-methoxy-substituted dyes were oxidized to SPH and either 2-methyl- or 2-methoxy-benzoquinone. Six products were formed from laccase oxidation of the 2,6-dimethoxy-substituted dye. Three of them were identified as SPH, 4-hydroxybenzenesulfonic acid, and 2,6-dimethoxybenzoquinone. A mechanism for the formation of benzoquinone and SPH from laccase oxidation of phenolic azo dyes is proposed. This study suggests that laccase oxidation can result in the detoxification of azo dyes.  相似文献   

3.
A recently isolated basidiomycete, Trametes sp. strain AH28-2, can be induced to produce a high level of laccases when grown on a cellobiose-asparagine liquid medium. After induction by kraft lignin, two major isozymes were detected in the fermentation supernatant of the fungus. The principal component laccase A, which accounts for about 85% of the total activity, can be purified to electrophoretic homogeneity by three chromatographic steps: DEAE-Sepharose FF, Superdex-200 and Mono-Q. The solution containing purified laccase is blue in color, and the ratio of absorbance at 280 nm to that at 600 nm is 22. The molecular mass of laccase A is estimated to be 62 kDa by SDS-PAGE, 57 kDa by FPLC, and measured as 58522 Da by MALDI mass spectrum. Laccase A is a monomeric glycoprotein with a carbohydrate content of 11-12% and an isoelectric point of 4.2. The optimum pH and temperature for oxidizing guaiacol are 4.5 and 50 degrees C, respectively. The half-life of the enzyme at 75 degrees C is 27 min. The enzyme shows a good stability from pH 4.2 to pH 8.0. The K(m) values of the enzyme toward substrates 2,2'-azino-bis (3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol and 2,6-dimethoxyphenol are 25, 420 and 25.5 microM, respectively, and the corresponding V(max) values are 670, 66.8, and 79 microM min(-1) x mg(-1), respectively. Laccase A activity is strongly inhibited by 0.1 mM NaN(3) or 0.1 mM cyanide. Two units of laccase A alone is able to completely oxidize 100 micromol 2,6-chlorophenol in 6 h. In the presence of 1 mM ABTS and 1-hydroxybenzotriazole, 15.0 U laccase A is able to oxidize 45% and 70% of 50 micromol fluorene in 12 and 18 h, respectively. The laccase A gene was cloned by a PCR method, and preliminary analysis of its sequence indicates 87.0% similarity to the corresponding segment in the phenoloxidase gene from Coriolus hirsutus.  相似文献   

4.
The influence of alcohol, 4-acetylamino,2,2,6,6′-tetramethylpiperidinyloxy (4-acetylamino-TEMPO) and laccase (from Trametes versicolor, TvL) concentration in the aerobic oxidation of furfuryl alcohol was investigated. Studies show that the Km for 4-acetylamino-TEMPO is around 6.3 mM (Vmax=0.18 mM min?1) using 6.6 U mL?1 of laccase and a furfuryl alcohol concentration of 140 mM. Under these optimized conditions, the reaction rate is still dependent on the concentration of enzyme in solution. Laccase can be reused, with a residual activity of around 25%. An important conclusion is that laccase is not stable in the presence of oxoammonium salts, presumably due to degradation via oxidation of essential amino acid residues or the glycosyl moieties on the periphery of the enzyme.  相似文献   

5.
Laccase (oxygen oxidoreductase, EC 1.10.3.2) from Trametes versicolor was thoroughly characterized in terms of its catalytic stability and its effectiveness as a biocatalyst under various reaction conditions when using phenol as a model substrate. This enzyme demonstrated high or moderate degrees of stability at pHs from 5 to 8 at 25 degrees C and at temperatures from 10 to 30 degrees C at pH 6. Exponential decay expressions were successfully used to model laccase inactivation when incubated under various conditions of pH and temperature. Phenol transformation was optimum at pH 6, but significant transformation was observed over a pH range of 4-7, provided that sufficient laccase was present in the reacting solution. Partial inactivation of laccase was observed during the oxidation of phenol, even under conditions of optimal stability (pH 6 and 25 degrees C).  相似文献   

6.
The growth of nonsporulating mycelial fungi INBI 2-26(+), producer of laccase; INBI 2-26(-), producer of cellobiose dehydrogenase; and their mixed culture on lignin-carbohydrate substrates under conditions of submerged fermentation were studied. The degrees of degradation of lignin, cellulose, and hemicellulose of cut straw over 23 days amounted to 29.8, 51.4, and 72% for the laccase producer; 15.8, 33.9, and 59.1% for the cellobiose dehydrogenase producer; and 15.8, 39.4, and 64.5% for the mixed culture, respectively. The laccase activity in the medium when strain 2-26(+) was cultivated individually reached its maximum on day 28; the activity of cellobiose dehydrogenase of strain 2-26(-), on days 14 to 28. A method for determining cellobiose dehydrogenase activity in the presence of laccase was developed. In the mixed culture, both enzymes were formed; however, the level of laccase synthesis was 1.5-fold lower compared to that of strain 2-26(+), while synthesis of cellobiose dehydrogenase was similar to that of the corresponding producer. Cellobiose dehydrogenase failed to boost the action of laccase while degrading the lignin of straw.  相似文献   

7.
Cross-linked enzyme crystals (CLECs) are a versatile form of biocatalyst that can also be used for biosensor application. Laccase from Trametes versicolor (E.C.1.10.3.2) was crystallized, cross-linked and lyophilized with beta-cyclodextrin. The CLEC laccase was found to be highly active towards phenols like 2-amino phenol, guaiacol, catechol, pyrogallol, catechin and ABTS (non-phenolic). The CLEC laccase was embedded in 30% polyvinylpropylidone (PVP) gel and mounted into an electrode to make the sensor. The biosensor was used to detect the phenols in 50-1000 micromol concentration level. Phenols with lower molecular weight such as 2-amino phenol, catechol and pyrogallol gave a short response time where as the higher molecular weight substrates like catechin and ABTS had comparatively a long response time. The optimum pH of the analyte was 5.5-6.0 when catechol was used as substrate. The CLEC laccase retained good activity for over 3 months.  相似文献   

8.
The growth of nonsporulating mycelial fungi INBI 2-26(+), a producer of laccase; INBI 2-26(–), a producer of cellobiose dehydrogenase; and their mixed culture on lignin–carbohydrate substrates under conditions of submerged fermentation was studied. The degrees of degradation of lignin, cellulose, and hemicellulose of cut straw over 23 days amounted to 29.8, 51.4, and 72% for the laccase producer; 15.8, 33.9, and 59.1% for the cellobiose dehydrogenase producer; and 15.8, 39.4, and 64.5% for the mixed culture, respectively. The laccase activity in the medium when strain 2-26(+) was cultivated individually reached its maximum on day 28; the activity of cellobiose dehydrogenase of strain 2-26(–), on days 14–28. A method for determining cellobiose dehydrogenase activity in the presence of laccase was developed. In the mixed culture, both enzymes were formed; however, the level of laccase synthesis was 1.5-fold lower compared to that of strain 2-26(+), while synthesis of cellobiose dehydrogenase was similar to that of the corresponding producer. Cellobiose dehydrogenase failed to boost the action of laccase while degrading the lignin of straw.  相似文献   

9.
Summary Laccase purified from Trametes versicolor oxidizes 2,6-dimethoxyphenol (2,6-DMP) and syringaldazine in hydrophobic solvents presaturated with water, and in hydrophilic organic solvents provided that a sufficient amount of water is added. Ease of performance of the laccase test in organic solvents is improved after immobilization of the enzyme by entrapping in Sepharose CL-6B during enzyme filtration through the gel beads. The gel-enzyme association has been shown to be stable in water-presaturated solvents. Efficiency of the immobilized laccase in organic solvents containing 7% water was 10%–20% of that in potassium-citrate buffer. Immobilized laccase in organic solvents showed good stability and high tolerance to elevated temperatures.  相似文献   

10.
There has been increasing interest in extracellular enzymes from white rot fungi, such as lignin and manganese peroxidases, and laccases, due to their potential to degrade both highly toxic phenolic compounds and lignin. The optimum cultivation conditions for laccase production in semi-solid and liquid medium by Trametes versicolor, Trametes villosa, Lentinula edodes and Botrytis cinerea and the effects of laccase mediator system in E1 effluent were studied. The higher laccase activity (12756 U) was obtained in a liquid culture of T. versicolor in the presence of 1 mM of 2,5-xylidine and 0.4 mM copper salt as inducers. The effluent biotreatments were not efficient in decolorization with any fungal laccases studied. Maximum phenol reduction was approximately 23% in the absence of mediators from T. versicolor. The presence of 1-hydroxybenzotriazole did not increase phenol reduction. However, acetohydroxamic acid, which was not degraded by laccase, acted very efficiently on E1 effluent, reducing 70% and 73% of the total phenol and total organic carbon, respectively. Therefore, acetohydroxamic acid could be applied as a mediator for laccase bioremediation in E1 effluent.  相似文献   

11.
In the present paper the effect of adding veratryl alcohol and copper sulphate on laccase activity production by Trametes versicolor immobilized into alginate beads has been investigated. Employing copper sulphate as laccase inducer or supplementing the culture medium with veratryl alcohol, led to maximum values of laccase activity. However, the highest laccase activity (around 4,000 U l−1) was obtained in cultures simultaneously supplemented with copper sulphate (3 mM) and veratryl alcohol (20 mM). These values implied a considerable enhancement in relation to␣control cultures without any inducer (around 200 U l−1). The production of laccase by immobilized T. versicolor in a 2-l airlift bioreactor with the optimized inducer has been evaluated. Laccase activities around 1,500 U l−1 were attained. The bioreactor operated for 44 days without operational problems and the bioparticles (fungus grows in alginate beads) maintained their shape throughout the fermentation. Moreover, the extracellular liquid obtained was studied in terms of pH and temperature activity and stability. On the other hand, anthracene was added in two-repeated batches in order to determine the efficiency of this process to degrade pollutants. Near complete degradation was reached in both batches. Moreover, in vitro degradation of several polycyclic aromatic hydrocarbons by crude laccase was also performed.  相似文献   

12.
Bisphenol A (BPA) was treated with hyper lignin-degrading fungus Phanerochaete sordida YK-624 under ligninolytic condition. After preculturing P. sordida YK-624 for 4 days, BPA (final concentration, 1 and 0.1 mM) was added to cultures. Both 1- and 0.1-mM BPA were effectively decreased within a 24-h treatment and two metabolites were detected. Two metabolites (5,5′-bis-[1-(4-hydroxy-phenyl)1-methyl-ethyl]-biphenyl-2,2′-diol and 4-(2-(4-hydroxy-phenyl) propan-2-yl)-2-(4-(2-(4-hydroxyphenyl) propan-2-yl) phenoxy)phenol) were identified by ESI–MS and NMR analysis. These results indicated that BPA was oxidized to BPA phenoxy radicals by ligninolytic enzymes and then dimerized at extracellular region.  相似文献   

13.
The commonly used assay for measuring cellobiose dehydrogenase (CDH) activity, based on the reduction of dichlorophenol-indophenol (DCIP), has been adapted to measure this enzyme activity in the presence of laccase, which is often formed concurrently with CDH by a number of fungi. Laccase interferes with the assay by rapidly reoxidizing the reduced form of DCIP and can mask CDH activity completely. It can be conveniently and completely inhibited by 4 mM fluoride in the assay, while CDH activity is only slightly affected by the addition of this inhibitor. The modified assay enables the detection of low CDH activities even in the presence of very high excesses of laccase. It should be useful for screening culture supernatants of wood-degrading fungi for CDH since the assay is rapid and uses inexpensive and nontoxic reagents. Furthermore, it might be used for the detection of other enzyme activities which are assayed by following the reduction of quinones or analogue compounds such as DCIP.  相似文献   

14.
The metabolism of bisphenol A (BPA), an endocrine-disrupting chemical, was studied with a highly purified laccase from the basidiomycete Trametes villosa. The enzyme reaction products ranged widely from water-insoluble to -soluble compounds, one of which was previously identified as 4-isopropenylphenol. (1)H NMR and electron-impact mass spectrum analyses showed that one of the insoluble products was a BPA dimer, 5,5'-bis-[1-(4-hydroxy-phenyl)-1-methyl-ethyl]-biphenyl-2,2'-diol. Field-desorption mass spectrum analysis revealed BPA oligomers, some of which contained phenol, within the insoluble fraction. These results indicate that the laccase reaction may contain successive BPA polymerization, followed by either the addition of phenol to the formed oligomers or their decomposition to release 4-isopropenylphenol.  相似文献   

15.
The effects of the carbon and nitrogen sources, initial pH and incubation temperature on laccase production by Trametes modesta were evaluated using the one-factor-at-a-time method. The final optimisation was done using a central composite design resulting in a four-fold increase of the laccase activity to 178 nkat ml(-1). Response-surface analysis showed that 7.34 g l(-1) wheat bran, 0.87 g l(-1) glucose, 2.9 g l(-1) yeast extract, 0.25 g l(-1) ammonium chloride, an initial pH of 6.95 and an incubation temperature of 30.26 degrees C were the optimal conditions for laccase production. Laccase produced by T. modesta was fully active at pH 4 and at 50 degrees C. The laccase was very stable at pH 4.5 and at 40 degrees C but half-lives decreased to 120 and 125 min at higher temperature (60 degrees C) and lower pH (pH 3).  相似文献   

16.
Laccase-producing fungi were isolated from air, using selective media with a chromogenic substrate to indicate enzyme activity. The best laccase producer strain proved to be a Leptosphaerulina chartarum isolate. Laccase production was investigated in the presence of various inducers in different cultivation conditions. The extracellular laccase was purified for further investigations. SDS-PAGE showed that this laccase is a monomeric protein of 38 kDa molecular weight. The enzyme is active in the pH-range of 3.5–6, with an optimum at pH 3.8. It is active in the 10–60 °C temperature range, with an optimum at 40 °C. After 20 min incubation at temperatures above 70 °C the enzyme lost its activity. Degradation of seven aniline and phenol compounds (2,4-dichlorophenol; 2-methyl-4-chlorophenol; 3-chloroaniline; 4-chloroaniline; 2,6-dimethylaniline; 3,4-dichloroaniline and 3-chloro-4-methylaniline) was investigated, with or without guaiacol (2-methoxyphenol) as mediator molecule. Addition of a mediator to the system significantly increased the degradation levels. These results confirmed that the isolated laccase is able to convert these harmful xenobiotics at in vitro conditions.  相似文献   

17.
The influence of alcohol, 4-acetylamino,2,2,6,6'-tetramethylpiperidinyloxy (4-acetylamino-TEMPO) and laccase (from Trametes versicolor, TvL) concentration in the aerobic oxidation of furfuryl alcohol was investigated. Studies show that the K m for 4-acetylamino-TEMPO is around 6.3 mM (V max=0.18 mM min-1) using 6.6 U mL-1 of laccase and a furfuryl alcohol concentration of 140 mM. Under these optimized conditions, the reaction rate is still dependent on the concentration of enzyme in solution. Laccase can be reused, with a residual activity of around 25%. An important conclusion is that laccase is not stable in the presence of oxoammonium salts, presumably due to degradation via oxidation of essential amino acid residues or the glycosyl moieties on the periphery of the enzyme.  相似文献   

18.
Laccase isozymes from the white-rot basidiomycete fungi Trametes versicolor and Pycnoporus cinnabarinus were purified to apparent iso-electric homogeneity and crystallised. T. versicolor laccase crystallises in two crystal forms, both with the orthorhombic space group P2(1)2(1)2(1), which diffract to 1.9 and 2.95 A resolution, respectively. The crystals of P. cinnabarinus laccase belong to the monoclinic space group C2 and diffract to at least 2.2 A resolution. All the laccase crystals are suitable for X-ray structure determination and contain a full complement of copper ions.  相似文献   

19.
Levin L  Forchiassin F  Ramos AM 《Mycologia》2002,94(3):377-383
Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, produces several ligninolytic enzymes, laccase being the dominant one, with higher titers than those reported for most other white rot fungi studied up to date. The effect of copper on in vitro production of extracellular ligninolytic activities was studied. CuSO(4)·5H(2)O concentrations from 1.6 μM to 1.5 mM were tested in a synthetic medium with glucose 20 g/L and asparagine 3 g/L. The addition of copper (up to 1 mM) did not affect growth but strongly stimulated ligninolytic enzyme production; faster decolorization of the polymeric dye Poly R-478 was observed as well. Maximal production of manganese peroxidase, laccase, and glyoxal oxidase [1.28 U/mL, 93.8 U/mL (with a specific activity of 720 U/mg protein), and 0.46 U/mL respectively] was attained with 1 mM CuSO(4)·5H(2)O. However, higher copper concentrations inhibited growth and notably decreased manganese peroxidase production, although they did not affect laccase secretion. Laccase activity in the culture filtrate was maximal at 50 C and pH 3.4, and the enzyme was completely stable at pH 4.4 and above, and at 30 C for up to 5 d. Denaturing polyacrylamide gel electrophoresis of extracellular culture fluids showed two laccase activity bands (mol wt 38 and 60 kDa respectively). The pattern of isoenzyme production was not affected by medium composition but differed with culture age.  相似文献   

20.
《Process Biochemistry》2004,39(11):1415-1419
The white-rot fungus Pleurotus ostreatus strain 32 is an excellent producer of the industrially important enzyme laccase. Laccase was the only ligninolytic activity detected in the supernatant when the fungus was grown in liquid culture with or without shaking. Growth and laccase production in static cultivation were superior to that in agitated cultivation, and N-limited culture is of benefit to laccase production. When using cellobiose and peptone as carbon and nitrogen source, a higher activity level was obtained. 2,2′-Azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) (1 mM) was shown to be the best inducer of laccase production, reaching maximum values of about 400 U/ml. Cu2+ (1 mM) also had a positive effect on laccase production, activity being enhanced to 360 U/ml. In addition, anthraquinone dye SN4R can be effectively decolorized by crude laccase (30 U/ml), the rate of which was 66%. The decolorization rate was increased by 90% with ABTS (0.16%) addition as a mediator of laccase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号