首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Velvizhi G  Mohan SV 《Bioresource technology》2011,102(23):10784-10793
Biocatalyst behavior was comparatively evaluated under diverse microenvironments viz., self-induced electrogenic (bioelectrochemical treatment, BET) and anaerobic treatment (AnT) microenvironments, with real-field pharmaceutical wastewater. Relatively higher treatment efficiency was observed with BET (COD removal, 78.70%) over AnT (32%) along with the power output. Voltammetric profiles of AnT showed persistent reduction behavior, while BET depicted simultaneous redox behavior. BET operation documented significantly higher bio-electrocatalytic activity (kapp, 245.22 s−1) than AnT (kapp, 7.35 s−1). The electron accepting conditions due to the presence of electrode in the BET might contributed to higher electrogenesis leading to enhanced substrate degradation along with the removal of multiple pollutants accounting for the effective reduction of toxicity levels of wastewater. Even at higher organic loads, BET operation showed good treatment efficiency without process inhibition. Introduction of electrode-membrane assembly in anaerobic microenvironment showed significant change in the electrocatalytic behavior of biocatalyst resulting in enhanced treatment of complex wastewater.  相似文献   

2.
Mohan SV  Srikanth S 《Bioresource technology》2011,102(22):10210-10220
Microbially catalyzed treatment of wastewater was evaluated in both the anode and cathode chambers in dual chambered microbial fuel cell (MFC) under varying biocathode microenvironment. MFC operation with aerobic biocathode showed significant increment in both TDS (cathode, 90.2±1%; anode, 39.7±0.5%) and substrate (cathode, 98.07±0.06%; anode, 96.2±0.3%) removal compared to anaerobic biocathode and abiotic cathode operations (COD, 80.25±0.3%; TDS, 30.5±1.2%). Microbially catalyzed reduction of protons and electrons at cathode will be higher during aerobic biocathode operation which leads to gradual substrate removal resulting in stable bio-potential for longer periods facilitating salts removal. Bio-electro catalytic behavior showed higher exchange current density during aerobic biocathode operation resulting in induced electrochemical oxidation which supports the enhanced treatment. Anaerobic biocathode operation depicted relatively less TDS removal (anode, 16.35%; cathode, 16.04%) in both the chambers in spite of good substrate degradation (anode, 84%; cathode, 87.39%). Both the chambers during anaerobic biocathode operation competed as electron donors resulting in negligible bio-potential development.  相似文献   

3.
The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40 °C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series.  相似文献   

4.
This study investigated the potential effect of poultry dung (biostimulation) and stubborn grass (Sporobolus pyramidalis) (phytoremediation) on microbial biodegradation of gasoline and nickel uptake in gasoline-nickel-impacted soil. In addition, the potential stimulatory effects of nickel on hydrocarbon utilization were investigated over a small range of nickel concentrations (2.5–12.5 mg/kg). The results showed that an increase in nickel concentration increased hydrocarbon degraders in soil by a range of 8.4–17.2% and resulted in a relative increase in gasoline biodegradation (57.5–62.4%). Also, under aerobic conditions, total petroleum hydrocarbons’ (TPH) removal was 62.4% in the natural gasoline-nickel microcosm (natural attenuation), and a maximum of 78.5%, 85.7%, and 95.8% TPH removal was obtained in phytoremediation, biostimulation, and a combination of biostimulation- and phytoremediation-treated microcosms, respectively. First-order kinetics described the biodegradation of gasoline and nickel uptake very well. Half-life times obtained were 28.88, 18.24, 14.44, and 8.56 days for gasoline degradation under natural attenuation, phytoremediation, biostimulation, and combined biostimulation and phytoremediation treatment methods, respectively. The results indicate that these remediation methods have promising potential for effective remediation of soils co-contaminated with petroleum hydrocarbons and heavy metals.  相似文献   

5.
Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (-5, 0, and 7 degrees C). An additional treatment was incubation for alternating 24-h periods at 7 and -5 degrees C. Hydrocarbons were biodegraded at or above 0 degrees C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and -5 degrees C treatments, respectively, was 450, 300, and 600 microg/g of soil. No TPH removal was observed at -5 degrees C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and -5 degrees C treatment.  相似文献   

6.
The use of plants and their rhizospheric microorganisms is a promising emerging technology for remediating contaminated soils. The degradation of total petroleum hydrocarbon (TPH) in the rhizospheric and nonrhizospheric soil of three domestic plants, namely, alfalfa (Medicaga sativa) broad beans (Vicia faba) and ryegrass (Lolium perenne) was investigated. The experimental data from the studies of plantmicrobe‐soil interactions implicated the enhancement of TPH degradation by the rhizospheric microbial community. Although the three domestic plants exhibited normal growth in the presence of ~1.0% TPH, the degradation was more profound in the case of leguminous plants. The TPH degradation in the soil cultivated with broad beans and alfalfa was 36.6 and 35.8%, respectively, compared with 24% degradation in case of ryegrass. Such a high correlation between plant type and TPH degradation rates indicate that selection for enhanced rhizosphere degradation may be accomplished by selecting leguminous plants.  相似文献   

7.
The aim of this study was to degrade total petroleum hydrocarbon (TPH) in a petroleum sludge contaminated site (initial TPH concentration of 65,000–75,000 mg.kg–1) with two native sedge species namely Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Fertilized and unfertilized treatments were maintained separately to record the influence of fertilizer in TPH degradation. The average biomass production (twenty plants from each treatment) of C. rotundus was 345.5 g and that of C. brevifolius was 250.6 g in fertilized soil during 360 days. Decrease in soil TPH concentration was higher in fertilized soil (75% for C. rotundus and 64% for C. brevifolius) than in unfertilized soil (36% for C. rotundus and 32% for C. brevifolius). In unvegetated treatments, decrease in soil TPH concentration in fertilized (12%) and unfertilized soil (8%) can be attributed to natural attenuation and microbial degradation. TPH accumulation in roots and shoots was significantly higher in fertilized soil in comparison to unfertilized soils (p < 0.05). Most probable number (MPN) in planted treatments was significantly higher than in unplanted treatments (p < 0.05).  相似文献   

8.
A batch pot experiment using nine herbaceous species were conducted for peat enhanced rehabilitation of contaminated soil with oily sludge in the initial contents of 0%, 1.3%, 7.4%, and 12.2%, respectively. The results showed that petroleum hydrocarbons removal, plant growth indices and enzyme activities varied depending on plant species and oil contents. Cotton, ryegrass and tall fescue were effective in the rehabilitation of oily sludge contaminated soils. The total petroleum hydrocarbon (TPH) removal ranged from 30.0% to 40.0% after 170 days of treatment. Plant biomass was shown to be the preferred indicator for screening phytoremediation plant because it was closely correlated with TPH removal and enzyme activities. Peat-enhanced plant rehabilitation could be a good strategy for the treatment of oily sludge contaminated saline soils.  相似文献   

9.
The effect of anodic biofilm growth and extent of its coverage on the anodic surface of a single chambered mediatorless microbial fuel cell (MFC) was evaluated for bioelectricity generation using designed synthetic wastewater (DSW) and chemical wastewater (CW) as substrates and anaerobic mixed consortia as biocatalyst. Three MFCs (plain graphite electrodes, air cathode, Nafion membrane) were operated separately with variable biofilm coverage [control; anode surface coverage (ASC), 0%], partially developed biofilm [PDB; ASC approximately 44%; 90 days] and fully developed biofilm [FDB; ASC approximately 96%; 180 days] under acidophilic conditions (pH 6) at room temperature. The study depicted the effectiveness of anodic biofilm formation in enhancing the extracellular electron transfer in the absence of mediators. Higher specific power production [29mW/kg COD(R) (CW and DSW)], specific energy yield [100.46J/kg VSS (CW)], specific power yield [0.245W/kg VSS (DSW); 0.282W/kg VSS (CW)] and substrate removal efficiency of 66.07% (substrate degradation rate, 0.903kgCOD/m(3)-day) along with effective functioning fuel cell at relatively higher resistance [4.5kOmega (DSW); 14.9kOmega (CW)] correspond to sustainable power [0.008mW (DSW); 0.021mW (CW)] and effective electron discharge (at higher resistance) and recovery (Coulomb efficiency; 27.03%) were observed especially with FDB operation. Cyclic voltammetry analysis documented six-fold increment in energy output from control (1.812mJ) to PDB (10.666mJ) operations and about eight-fold increment in energy from PDB to FDB (86.856mJ). Biofilm configured MFC was shown to have the potential to selectively support the growth of electrogenic bacteria with robust characteristics, capable of generating higher power yields along with substrate degradation especially operated with characteristically complex wastewaters as substrates.  相似文献   

10.
The biodegradation of No. 2 diesel fuel under anaerobic conditions was investigated using sediments collected from wetlands of Barataria-Terrebonne estuary in Louisiana. The results indicated enhanced biodegradation of diesel fuel under sulfate-reducing, nitrate-reducing, methanogenic, and mixed electron acceptor conditions. However, the rate of diesel degradation was the highest under mixed electron acceptor conditions followed in order by sulfate-reducing, methanogenic, and nitrate-reducing conditions. Under mixed electron acceptor condition, 99% removal of diesel fuel was achieved within 510 days, while under sulfate-reducing condition 62% degradation of diesel fuel was observed for the same period. Diesel fuel was also degraded to a smaller extent in the culture condition where electron acceptors were not supplemented (natural attenuation condition). This study showed evidence for enhanced diesel fuel metabolism in a mixed microbial population system similar to any contaminated field site, where a heterogeneous microbial population exists.  相似文献   

11.
Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (−5, 0, and 7°C). An additional treatment was incubation for alternating 24-h periods at 7 and −5°C. Hydrocarbons were biodegraded at or above 0°C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and −5°C treatments, respectively, was 450, 300, and 600 μg/g of soil. No TPH removal was observed at −5°C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and −5°C treatment.  相似文献   

12.
This paper reports the effect of the operation and design characteristics of rotating drum bioreactors (RDBs) aerated by natural convection and applied to the treatment of a soil highly polluted with weathered total petroleum hydrocarbons (TPH) (55,000 ± 2,600 mg/kg). The parameters studied were length to diameter ratio (L/D), rotating speed (N) and lifter type. The highest TPH removal (59.6 ± 0.7%) was obtained with the RDB of the lowest L/D ratio (1.5). Removals diminished by 27, 36 and 56%, with a ratio increment of 2.1, 3.1 and 5.1, respectively. Increment of the N, at an optimal value and lifter change from straight to helicoidal showed an improvement on the TPH removal of 20 and 30%, respectively. According to these results, slurry surface renewal through the variation of the N and the change of slurry flow was able to improve TPH removal in RDBs operated by natural convection.  相似文献   

13.
The objective of this research is to investigate Fenton and persulfate oxidation with zero-valent iron [Fe(0)] as a batch type ex-situ remediation technology for the treatment of diesel-contaminated soil. Results from batch experiments indicate that Fe(0) is a better catalyst for H2O2 and persulfate than Fe2+ for the enhancement of Fenton and persulfate oxidation in a batch system. Maximum removal was obtained after 12 h when 1 and 2 g of Fe(0) were added to hydrogen peroxide (250 mg/L) and persulfate (250 mg/L), respectively, in a soil-water system. As the amounts of Fe(0) and persulfate were increased three times at the optimal ratio, the removal of total petroleum hydrocarbon (TPH) was enhanced accordingly. More than 90% of the TPH was removed in 3 h, and the treated soil met the Korean regulation level (500 mg/kg) for TPH. Increased amounts of Fe(0) and hydrogen peroxide (up to 10 g and 1250 mg/L, respectively) also significantly enhanced degradation under the optimal conditions. The results of our study suggest that Fe(0)-assisted Fenton and persulfate oxidation in a batch reactor may be an alternative option to treat diesel-contaminated soil.  相似文献   

14.
Lu M  Wei X 《Bioresource technology》2011,102(3):2555-2562
Laboratory-scale experiments were conducted in order to evaluate the performance of a novel treatment process for oilfield wastewater based on combining chemical oxidation, performed by a zerovalent iron (ZVI), ethylenediamine tetraacetic acid (EDTA) and air process, with biological degradation, carried out in a batch activated sludge reactor. The influence of some operating variables was studied. The results showed that the optimum pretreatment conditions were 150 mg/L EDTA, 20 g/L ZVI, and a 180-min reaction time, respectively. Under these conditions, removal efficiencies for hydrolyzed polyacrylamide (HPAM), total petroleum hydrocarbons (TPH), and chemical oxygen demand (COD) were 66%, 59%, and 45%, respectively. During the subsequent 40 h of bioremediation, the concentrations of HPAM, TPH, and COD were decreased to 10, 2 and 85 mg/L, respectively. At the end of experiments, the total removal efficiencies of HPAM, TPH, and COD were 96%, 97% and 92%, respectively.  相似文献   

15.
Bacterial succession in a petroleum land treatment unit   总被引:7,自引:0,他引:7  
Bacterial community dynamics were investigated in a land treatment unit (LTU) established at a site contaminated with highly weathered petroleum hydrocarbons in the C(10) to C(32) range. The treatment plot, 3,000 cubic yards of soil, was supplemented with nutrients and monitored weekly for total petroleum hydrocarbons (TPH), soil water content, nutrient levels, and aerobic heterotrophic bacterial counts. Weekly soil samples were analyzed with 16S rRNA gene terminal restriction fragment (TRF) analysis to monitor bacterial community structure and dynamics during bioremediation. TPH degradation was rapid during the first 3 weeks and slowed for the remainder of the 24-week project. A sharp increase in plate counts was reported during the first 3 weeks, indicating an increase in biomass associated with petroleum degradation. Principal components analysis of TRF patterns revealed a series of sample clusters describing bacterial succession during the study. The largest shifts in bacterial community structure began as the TPH degradation rate slowed and the bacterial cell counts decreased. For the purpose of analyzing bacterial dynamics, phylotypes were generated by associating TRFs from three enzyme digests with 16S rRNA gene clones. Two phylotypes associated with Flavobacterium and Pseudomonas were dominant in TRF patterns from samples during rapid TPH degradation. After the TPH degradation rate slowed, four other phylotypes gained dominance in the community while Flavobacterium and Pseudomonas phylotypes decreased in abundance. These data suggest that specific phylotypes of bacteria were associated with the different phases of petroleum degradation in the LTU.  相似文献   

16.
In order to compare the petroleum tolerance and phytoremediation ability of a native grass, Agropyron desertorum (desert Wheatgrass) with Cynodon spp. (Bermuda grass) in a petroleum hydrocarbon-contaminated soil, a 7-month greenhouse experiment was performed. There were 4 soil treatments with 0% (uncontaminated soil), 2%, 4%, and 12% (woil/wsoil) petroleum concentration. Parameters including shoot and root fresh weight and dry weight, root penetration depth and root density depth, soil respiration, and total petroleum hydrocarbons (TPH) degradation were measured during and after experiments. The results showed an increase in shoot fresh weight of A. desertorum in soil polluted with 2% petroleum sludge compared to the uncontaminated soil, whereas the growth of Bermuda grass significantly decreased in corresponding treatment. Root growth of A. desertorum was decreased in 2% and 4% petroleum sludge, whereas it was increased in Bermuda grass species. Overall, root fresh weight of Bermuda grass was higher than that of A. desertorum in all treatments. Significant increase in microorganisms' activity was observed in the presence of petroleum sludge and plants in soil compared with uncontaminated soil without plants, and the highest soil respiration (37.6 mg C-CO2/kg soil day) has been observed in the rhizosphere of Bermuda grass in treatment with 12% petroleum sludge. Plants had a significant role in the degradation of soil contaminants as TPH degradation in planted soils was significantly higher than that in unplanted soil (TPH degradation (%) was 30.4 and 38.9 in A. desertorum and Bermuda grass, respectively, whereas it was just 13.3 in unplanted soil). The rhizosphere of Bermuda grass had significantly less residual TPHs compared to A. desertorum. The results indicated that both Cynodon spp. and A. desertorum had a peculiar tolerance to petroleum pollution. Therefore, as Bermuda grass has already been suggested to be a typical and efficient species for phytoremediating petroleum-contaminated sites, A. desertorum may also prove to be a suitable native alternative.  相似文献   

17.
Laboratory landfarming experiments were conducted to study the bioremediation potential of weathered Michigan crude oil‐contaminated soils. It was found that landfarming was successful in removing up to 90% of the total petroleum hydrocarbons (TPH) in the soil within 22 weeks of treatment. Boiling point analyses of untreated and treated soils indicate a significant removal of TPH compounds independent of molecular weight or carbon number. Up to 85% of heavy petroleum hydrocarbons with carbon numbers above 44 were biode‐graded. In addition, approximately 93% of saturated and 79% of aromatic compounds of the TPH were biodegraded during the 22 week treatment period. The use of polyethylene sheeting as a landfarm cover does not appear to adversely affect biodegradation kinetics under laboratory conditions. Finally, equilibrium leachate concentrations for BTEX and regulated (in Michigan) polynuclear aromatics (PNAs) were below the respective detection limits for each compound. It can be concluded that landfarming of these weathered soils will be highly successful in removing petroleum hydrocarbons while not adversely impacting either ground‐water or surface water quality.  相似文献   

18.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

19.
The stepwise Fenton oxidation process, in which hydrogen peroxide (H2O2) is added in a step-by-step manner instead of at the beginning, can achieve better sorbed crude oil removal effects. The results showed that if a high ratio of sorbed total petroleum hydrocarbon (TPH) was present in soil samples S1 (100%, initial TPH: 10,009 mg/kg) and S2 (94.2%, initial TPH: 4850 mg/kg), the TPH was oxidized in each step. In addition, the total TPH removal efficiency was 49.6% compared with the 27.9% achieved in conventional Fenton oxidation in which all H2O2 was added at the beginning. Nevertheless, when the ratio of sorbed TPH in the soil sample S3 was low (45.3%, initial TPH: 2850 mg/kg), the TPH removal efficiency was 18.9%, which was slightly higher than 18.2% achieved in the conventional Fenton process because if the sorbed TPH concentration was low, the sorbed TPH was mainly removed in the first step. The second and the third step resulted in long-chain alkanes entering the aqueous phase rather than removing them from the soil, which posed environmental risk. Therefore, it is clear that stepwise Fenton oxidation could improve sorbed TPH removal efficiency when the sorbed TPH concentration in the soil is high.  相似文献   

20.
The application of biological processes in restoring oil polluted sites is growing due to their efficiency in removing different classes of pollutants. The aim of this study was to determine the ability of microorganisms present in a drilling-waste polluted soil (36,200 mg TPH kg?1 soil) to remove weathered hydrocarbons under stimulated and non-stimulated soil conditions. The hypothesis under study was whether petroleum hydrocarbons removal could be enhanced by manipulating C/N ratio, water content and addition of three agroindustrial wastes. A Box-Behnken design was employed to evaluate the effect of each variable. Results demonstrated that, for orange peels and banana trunk treatments, the variable with the largest effect (p < 0.01) on hydrocarbon removal was the C/N ratio, indicating that higher ratio (100/3) improved removal (79.5–82%). The largest effect (p < 0.001) on hydrocarbon removal for pineapple wastes was observed with higher water content (60%) achieving the highest removal (89%). After 90 days of experimentation, the type of agricultural waste and the agricultural waste/soil ratio were not statistically significant in any treatment. However, their addition was important relative to non-stimulated soil, which showed a hydrocarbon removal of 17%. Data reported in this study showed the application of bioremediation in clay and drilling waste-polluted soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号