首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken liver plasma membranes, minimally contaminated with Golgi apparatus-derived vesicles, were prepared from a low-speed (400 g) pellet by means of flotation in isotonic Percoll solution, followed by a hypotonic wash and flotation in a discontinuous sucrose gradient. Based on the analysis of suitable marker enzymes, alkaline phosphatase and alkaline phosphodiesterase, two plasma membrane fractions were isolated with enrichments, depending on the equilibrium density and marker of 28-97 and with a total yield of 4-5%. Golgi apparatus fractions were prepared by flotation of microsomes, obtained from the same homogenate as the low-speed pellet, in a discontinuous sucrose gradient. The trans-Golgi marker galactosyltransferase was 27-fold enriched in a fraction of intermediate density (d=1.077-1.116 g/ml). Approximately 12% of galactosyltransferase was recovered in the membranes equilibrating d=1.031-1.148 g/ml. Contamination with plasma membrane fragments was low in the light (d=1.031-1.077 g/ml) and intermediate density Golgi vesicles. The isolation of purified plasma membranes and Golgi vesicles from one liver homogenate will enable future studies on receptor cycling between these cell organelles.  相似文献   

2.
Abstract Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans . Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

3.
Subcellular distribution of chitin synthetase has been studied in germ tubes of Candida albicans. Two fractions with synthetase activity were separated from cell homogenates: (i) a mixed membrane fraction where the enzyme, partly in an active form, is associated with the plasma membrane (isopycnic centrifugation of mixed membrane fraction on linear sucrose gradients resolved a unique peak of activity matching with [3H]ConA-labelled membranes at a buoyant density of 1.195 g/ml); and (ii) a cytoplasmic fraction containing fully zymogenic enzyme associated with particles whose buoyant density (determined by isopycnic centrifugation on linear sucrose gradients) depended on the cell breakage conditions. The actual cytoplasmic fraction-enzyme may correspond to particles with buoyant density 1.135 g/ml (chitosomes), whereas the enzyme particles with other densities (1.085 and 1.165 g/ml) probably originated during cell disruption, as has been reported previously to occur during the preparation of yeast cell homogenates.  相似文献   

4.
Artificial mixtures of plasma membrane vesicles produced by microcavitation from infected and uninfected cells band at the same density on isopycnic centrifugation in sucrose density gradient. However, after reaction with antiviral antibody, the density of the infected cell plasma membrane vesicles increases, and the infected and uninfected cell membranes are quantitatively separable on isopycnic centrifugation. Plasma membrane vesicles prepared from cells doubly labeled before and after infection with radioactive amino acids and reacted with antibody banded at a high density. Polyacrylamide gel electropherograms show that the vesicles reacted with antibody consist of both host- and virus-specific membrane proteins. Microcavitation does not disrupt viral envelopes since infectivity is not affected by this procedure. We conclude that viral and cellular proteins in the plasma membrane preparations are contiguous.  相似文献   

5.
Neutrophil chemotaxis, phagocytosis, and oxygen-dependent microbicidal activity are initiated by interactions of stimuli with the plasma membrane. However, difficulties in neutrophil plasma membrane isolation have precluded studies on the precise structure or function of this cellular component. In this paper, a method is described for the isolation of representative human neutrophil plasma membrane vesicles, using nitrogen cavitation for cell disruption and a combination of differential centrifugation and equilibrium ultracentrifugation in Dextran gradients for membrane fractionation. Multiple biochemical markers and galactose oxidase-tritiated sodium borohydride surface labeling were employed to follow the yield, purity, and distribution of plasma membranes, nuclei, lysosomes, endoplasmic reticulum, mitochondria, and cytosol. According to these markers, neutrophil plasma membranes were exposed to minimal lysosomal hydrolytic enzymes and could be isolated free of other subcellular organelles. In contrast, disruption of neutrophils by mechanical homogenization resulted in > 20% lysosomal rupture and significant plasma membrane proteolysis. Electron microscopy demonstrated that plasma membranes isolated after nitrogen cavitation appeared to be sealed vesicles with striking homogeneity.  相似文献   

6.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg/ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t 1/2) for at least one-third of the cell cholesterol of 3.2 +/- 0.6 and 14.3 +/- 1.5 h, respectively. Plasma membrane vesicles (0.5-5.0 micron diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t 1/2 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 +/- 0.5 and 11.2 +/- 0.7 h, respectively. These t 1/2 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rates indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 +/- 0.1 and 2.9 +/- 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t 1/2 values for cholesterol efflux from these cell lines.  相似文献   

7.
Cytoplasmic droplets of the boar are progressively lost from the flagellum of boar spermatozoa during epididymal transit, at ejaculation and during the nitrogen cavitation technique for isolation of plasma membranes. Apparently very fragile, these structures are broken up in the fluids of the reproductive tract and in the buffer used during the nitrogen cavitation procedure. The maximal potential contamination of cytoplasmic droplet internal vesicular membranes in plasma membrane fractions was determined to be 2.2% of the entire membrane surface area collected. The highly sensitive silver-stained, two-dimensional (2-D) polyacrylamide (PAGE) gels of boar sperm plasma membranes did not reveal cytoplasmic droplet, internal membrane, marker polypeptides, further demonstrating the high purity of plasma membrane preparations. In addition, freeze-fracture demonstrates that the internal membranes of the cytoplasmic droplet show few intramembranous particles and these may contribute little protein to plasma membrane preparations. The presence of two forms of vesicular elements in boar sperm Cytoplasmic droplets (typical vesicles and collapsed vesicles) is described.  相似文献   

8.
K Lange  U Brandt 《FEBS letters》1990,261(2):459-463
The recently proposed mechanistic concept of a receptor-regulated entrance compartment for hexose transport formed by microvilli on 3T3-L1 adipocytes predicted a preferential localization of glucose transporters in these structures. The cytochalasin B-binding technique was used to determine in basal and insulin-stimulated cells the distribution of glucose transporters between plasma membranes, low density microsomes (LDM) and two cell surface-derived membrane fractions prepared by a hydrodynamic shearing technique. The shearing procedure applied prior to homogenization yielded a low density surface-derived vesicle (LDSV) fraction which contained nearly 60% of the cellular glucose transporters and the total insulin-sensitive transporter pool. The rest of the glucose transporter population was localized within the plasma membrane (5%) and the LDM fraction (37%). Pretreatment of the cells with insulin (20 mU/ml for 10 min) reduced the transporter content of the LDSV fraction by 40% and increased that of the plasma membrane fraction 4-fold. The transporter containing LDSV fraction was clearly differentiated from the LDM fraction by its low specific galactosyltransferase activity and its insulin-sensitivity. Scanning electron microscopy revealed that the LDSV fraction contained a rather uniform population of spherical vesicles of 100-200 nm in diameter.  相似文献   

9.
Membrane vesicles were prepared from mouse fibroblasts transformed by SV40 virus (SV3T3). Following disruption of the cells by nitrogen cavitation, the membrane vesicles were obtained by differential centrifugation. As measured by enzyme markers, they consist mainly of membrane from the plasma membrane and smooth and rough endoplasmic reticulum. The vesicles transport Pi by two separate, mediated systems: one is independent of Na+, and the other is secondary active transport driven by a Na+ gradient. Electrical and chemical energy can be provided by a Na+ gradient to drive the concentrative uptake of Pi by the vesicles, one or both forces being used to energize transport. Evidence is provided that both the electrical and chemical potentials produced by the asymmetric distribution of Na+ across the membrane of SV3T3 membrane vesicles are utilized to concentrate phosphate in the vesicles. Phosphate transport by the vesicles cannot be accounted for by a small contamination of this fraction with mitochondria (1 to 4%). The Pi transport properties of the membrane vesicles differ from those of the fraction enriched in mitochondria in the following respects: their kinetic properties, and their responses to a Na+ gradient, N-ethylmaleimide, mersalyl, and succinate/acetate. However, the membrane vesicles share some properties of Pi transport with mitochondria. Cyanide, azide, oligomycin, 2,4-dinitrophenol, and carbonyl cyanide m-cholophenylhydrazone, inhibitors of Pi transport by mitochondria, also inhibit membrane vesicle, Pi transport. The vesicles retain all the features of Pi transport by SV3T3 cells that have been examined. They provide a simplified system for a determination of the details of the mechanism of Pi transport under conditions where transport is dissociated from intracellular reactions and in the presence of a defined electrochemical driving force.  相似文献   

10.
Plasma membranes were isolated and separated from thylakoid membranes by discontinuous sucrose density gradient centrifugation of crude membranes prepared by French pressure cell extrusion of lysozyme-treated Anacystis nidulans. Two distinct populations of chlorophyll-free plasma membrane vesicles were obtained exhibiting buoyant densities of 1.087 and 1.100 g/cm3 as opposed to a uniform density of 1.192 g/cm3 for thylakoid membranes. Plasma and thylakoid membranes were characteristically different also with respect to fatty acid and protein composition, cytochrome oxidase activity, and pigment content as analyzed by spectrophotometry, spectrofluorimetry, and high performance liquid chromatography. Apart from carotenoids, chlorophyll a was the only major photosynthetic pigment detected in thylakoid membranes while plasma membranes contained virtually no chlorophyll a but (besides large amounts of carotenoids) protochlorophyllide a and chlorophyllide a as revealed by solvent partition (between n-hexane and acetone or methanol), room and low temperature fluorescence emission and excitation spectra, and analytical separation and identification by high performance liquid chromatography and comparison with authentic standards. The protochlorophyllide in the plasma membrane could be transformed into chlorophyllide in the dark in vitro by incubating the membrane preparation with NADPH; NADP+ effected the reverse transition.  相似文献   

11.
Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane composition in order to control the magnitude of membrane heterogeneity in response to different growth conditions.  相似文献   

12.
Cell surface membrane fragments were isolated and purified by successive rate zonal and isopycnic centrifugation of calcium oxalate-loaded pigeon heart microsomes in sucrose density gradients. The most highly purified cell membrane fraction sediments at a buoyant density of 1.105 g/ml. Some of the membrane pieces are present as open fragments and leaky vesicles, while others form tightly sealed vesicles of both inside-in and inside-out membrane orientation. The pigeon heart cell membrane preparation exhibits high (Na+ + K+ + Mg2+)-ATPase and adenylate cyclase activities. Additional activity of these enzymes is uncovered by sodium dodecyl sulfate and alamethicin, respectively. Electron microscopic inspection of the cell surface membrane preparation revealed (a) a predominance of thick-walled vesicles with smooth surfaces on negative staining and (b) binding of concanavalin A to the bulk of isolated membrane pieces following their incubation with the lectin.  相似文献   

13.
Rotavirus interaction with isolated membrane vesicles.   总被引:9,自引:8,他引:1       下载免费PDF全文
To gain information about the mechanism of epithelial cell infection by rotavirus, we studied the interaction of bovine rotavirus, RF strain, with isolated membrane vesicles from apical membrane of pig enterocytes. Vesicles were charged with high (quenching) concentrations of either carboxyfluorescein or calcein, and the rate of fluorophore release (dequenching) was monitored as a function of time after mixing with purified virus particles. Purified single-shelled particles and untrypsinized double-shelled ones had no effect. Trypsinized double-shelled virions induced carboxyfluorescein release according to sigmoid curves whose lag period and amplitude were a function of virus concentration and depended on both temperature and pH. The presence of 100 mM salts (Tris Cl, NaCl, or KCl) was required, since there was no reaction in isoosmotic salt-free sorbitol media. Other membrane vesicle preparations such as apical membranes of piglet enterocyte and rat placenta syncytiotrophoblasts, basolateral membranes of pig enterocytes, and the undifferentiated plasma membrane of cultured MA104 cells all gave qualitatively similar responses. Inhibition by a specific monoclonal antibody suggests that the active species causing carboxyfluorescein release is VP5*. Ca2+ (1 mM), but not Mg2+, inhibited the reaction. In situ solubilization of the outer capsid of trypsinized double-shelled particles changed release kinetics from sigmoidal to hyperbolic and was not inhibited by Ca2+. Our results indicate that membrane destabilization caused by trypsinized outer capsid proteins of rotavirus leads to fluorophore release. From the data presented here, a hypothetical model of the interaction of the various states of the viral particles with the membrane lipid phase is proposed. Membrane permeabilization induced by rotavirus may be related to the mechanism of entry of the virus into the host cell.  相似文献   

14.
The hypothesis that sterol-enriched domains represent sites of preferred localization of PIP-aquaporins was tested in experiments on plasma membranes isolated from cells of etiolated pea (Pisum sativum L.) seedlings. Plasma membranes were isolated from microsomes by the partition in the aqueous two-phase polymer system and separated into vesicle fractions of different buoyant density by flotation in discontinuous OptiPrep gradient. Two types of plasma membrane preparations were used: one was treated with cold 1% Triton X-100 and the other was not. In untreated preparations, three populations of plasma membrane vesicles were obtained, while in the case of treated preparations, fractions of detergent-resistant membranes (DRM) and solubilized membrane proteins were obtained. In all membrane fractions collected after OptiPrep flotation, the amounts of proteins, sterols, and PIP-aquaporins were determined. The highest sterol content was detected in the membrane fraction with buoyant density 1.098 g/cm3 and in the DRM fraction (1.146 g/cm3). These fractions contained much more PIP-aquaporins than the other ones. Phase state of the lipid bilayer was determined by measuring generalized polarization excitation of fluorescence (GPEX) of laurdan incorporated into the membranes of different fractions. It was revealed that the lipid bilayer of the membranes with density of 1.098 g/cm3 had a higher extent of ordering than that of the fractions with density of ∼1.146 g/cm3. The results indicated that uppermost local concentrations of PIP-aquaporins were associated with tightly packed sterol-enriched domains. Moreover, upon solubilization of plasma membrane with Triton X-100, PIP-aquaporins mainly resided in DRM, thus exhibiting a high affinity to sterols.  相似文献   

15.
Two viruses, Perina nuda nucleopolyhedrovirus and a new picorna-like virus, were previously isolated from P. nuda larvae with flacherie. In this study the new picorna-like virus was characterized using physical and biochemical methods. This small virus appears to belong to the family Picornaviridae and we propose the name PnPV. PnPV can be propagated in its homogenous cell line, NTU-PN-HH. PnPV purified from the cell line resembles PnPV isolated from insects: under electron microscopy, it exhibits icosahedral symmetry, measures 30 nm in diameter, and has no envelope and no distinct surface structure in negatively stained preparations. In addition, we show here that PnPV has a buoyant density of 1.381 g/ml in cesium chloride, the viral genome was composed of one single-stranded RNA molecule with a length of 10 kb, and poly(A) tract and polyacrylamide gel electrophoresis of purified viral particles revealed three major (31.5, 29.7, and 28.4 kDa) and three minor (27. 0, 24.5, and 4.0 kDa) structural proteins.  相似文献   

16.
Plasmalemmal vesicle associated protein (Plvap/PV1) is a structural protein required for the formation of the stomatal diaphragms of caveolae. Caveolae are plasma membrane invaginations that were implicated in SV40 virus entry in primate cells. Here we show that de novo Plvap/PV1 expression in CV-1 green monkey epithelial cells significantly reduces the ability of SV40 virus to establish productive infection, when cells are incubated with low concentrations of the virus. However, in presence of high viral titers PV1 has no effect on SV40 virus infectivity. Mechanistically, PV1 expression does not reduce the cell surface expression of known SV40 receptors such as GM1 ganglioside and MHC class I proteins. Furthermore, PV1 does not reduce the binding of virus-like particles made by SV40 VP1 protein to the CV-1 cell surface and does not impact their internalization when cells are incubated with either high or low VLP concentrations. These results suggest that PV1 protein is able to block SV40 infectivity at low but not at high viral concentration either by interfering with the infective internalization pathway at the cell surface or at a post internalization step.  相似文献   

17.
Suspension cultured oat (Avena sativa L. cv. Garry) cells, which secrete polysaccharides into the medium, were used as starting material for analyses of Golgi-derived vesicle membranes and plasma membranes isolated during cell fractionation. Vesicles collected by a procedure employing ultrafiltration followed by ultracentrifugation into a sucrose step gradient exhibited an equilibrium density of 1.27 g cm?3 when run on continuous sucrose gradients, a feature which is most likely attributable to the high concentration of enclosed polysaccharides. Brief sonication lowered the density of these vesicles to about 1.15 g cm?3, as judged from the coincidence of the protein peak and the marker enzymes for Golgi [Triton-stimulated UDPase, cold-storage IDPase (EC 3.6.1.6)] and plasma membrane [vanadate-inhibited K+, Mg2+-ATPase (EC 3.6.1.3)]. Sonication of these vesicles also greatly diminished the amount of detectable polysaccharide observed in a colorimetric assay for sugars. Fractionation of a plasma membrane-enriched preparation from these cells on continuous sucrose gradients showed the major protein peak and the peak activity for the plasma membrane marker at 1.17 g cm?3, however, there was also significant overlap with a mitochondrial [cytochrome c oxidase (EC 1.9.3.1)] peak at 1.18 g cm?3, Smaller peaks of the Golgi markers were seen at 1.14 g cm?3. Analyses of marker enzymes for ER and mitochondria (EC 1.6.99.3) showed little contamination of the membranes of presumptive secretory vesicles from these sources, and the lack of significant vanadate-insensitive ATPase activity in the density range from 1.13–1.18 g cm?3 in either fractionation scheme suggests that these membranes do not include material from the tonoplast. The coincidence of markers for Golgi and plasma membrane with from the tonoplast. The coincidence of markers for Golgi and plasma membrane with the membranes of sonicated, dense vesicles, at a density slightly lower than that of plasma membranes prepared from the same cells, supports the possibility that membranes en route to the plasma membrane are incompletely differentiated.  相似文献   

18.
Earlier studies by our laboratory have suggested a relationship between an amiloride-sensitive Na+-H+ exchange process and the physical state of the lipids of rat colonic brush-border membrane vesicles. To further assess this possible relationship, a series of experiments were performed to examine the effect of dexamethasone administration (100 micrograms/100 g body wt. per day) subcutaneously for 4 days on Na+-H+ exchange, lipid composition and lipid fluidity of rat distal colonic brush-border membrane vesicles. The results of these studies demonstrate that dexamethasone treatment significantly: (1) increased the Vmax of the Na+-H+ exchange without altering the Km for sodium of this exchange process, utilizing the fluorescent pH-sensitive dye, acridine orange. 22Na flux experiments also demonstrated an increase in amiloride-sensitive proton-stimulated sodium influx across dexamethasone-treated brush-border membrane vesicles; (2) increased the lipid fluidity of treated-membrane vesicles compared to their control counterparts, as assessed by steady-state fluorescence polarization techniques using three different lipid-soluble fluorophores; and (3) increased the phospholipid content of treated-membrane vesicles thereby, decreasing the cholesterol/phospholipid molar ratio of treated compared to control preparations. This data, therefore, demonstrates that dexamethasone administration can modulate amiloride-sensitive Na+-H+ exchange in rat colonic distal brush-border membrane vesicles. Moreover, it adds support to the contention that a direct relationship exists between Na+-H+ exchange activity and the physical state of the lipids of rat colonic apical plasma membranes.  相似文献   

19.
The distribution of membrane-bound enzymes involved in mannan biosynthesis in plasma and mesosomal membranes of Micrococcus lysodeikticus has been investigated. Isolated mesosomal vesicles, unlike plasma membrane preparations, cannot catalyze the transfer of [14C]mannose from GDP-[14C]mannose into mannan. This appears to result from the inability of this membrane system to synthesize the carrier lipid [14C]mannosyl-1-phosphorylundecaprenol. In contrast, this is the major mannolipid synthesized from GDP-[14C]mannose by isolated plasma membranes. The possibility that substrate inaccessibility could account for the failure to detect the enzyme in isolated mesosomal vesicles appears unlikely from the lack of activity following disruption of the vesicles with ultrasound or with surface active agents. Both membrane preparations possessed the ability to catalyse the transfer of [14C]mannose from purified [14C]mannosyl-1-phosphorylundecaprenol into mannan. Furthermore, free mannan and mannan located on both unlabeled mesosomal and unlabeled plasma membranes could act as acceptors of [14C]mannosyl units from 14C-labeled carrier lipid located in prelabeled plasma membranes. The possibility that the juxtaposition of mesosomal vesicles and enveloping plasma membrane (i.e. the mesosomal sacculus) in vivo allows mannan, located on mesosomal vesicles, to accept mannosyl units from carrier lipid located in the sacculus membrane is discussed.  相似文献   

20.
《Molecular membrane biology》2013,30(3-4):203-219
Brush border membrane vesicles were isolated from rat kidney cortex by differential centrifugation in the presence of 10 mM calcium. Their properties were compared to brush border vesicles isolated by free-flow electrophoresis. By the calcium precipitation method membrane vesicles were obtained in a shorter time with a similar enrichment of brush border marker enzymes (11- to 12-fold for alkaline phosphatase and maltase), with a similarly reduced activity of the marker enzyme for basal-lateral plasma membranes and an almost identical protein composition as revealed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The transport properties of the two membrane preparations for D-glucose, L-phenylalanine, and phosphate are essentially the same; there is some indication for a lower sodium permeability of the vesicles prepared by the calcium precipitation method. The latter vesicles were also shown to exhibit sodium gradient stimulated uptake of L-glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号