首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single channel properties of cardiac and fast-twitch skeletal muscle sarcoplasmic reticulum (SR) release channels were compared in a planar bilayer by fusing SR membranes in a Cs+-conducting medium. We found that the pharmacology, Cs+ conductance and selectivity to monovalent and divalent cations of the two channels were similar. The cardiac SR channel exhibited multiple kinetic states. The open and closed lifetimes were not altered from a range of 10–7 to 10–3 M Ca2+, but the proportion of closed and open states shifted to shorter closings and openings, respectively.However, while the single channel activity of the skeletal SR channel was activated and inactivated by micromolar and millimolar Ca2+, respectively, the cardiac SR channel remained activated in the presence of high [Ca2+]. In correlation to these studies, [3H]ryanodine binding by the receptors of the two channel receptors was inhibited by high [Ca2+] in skeletal but not in cardiac membranes in the presence of adenine nucleotides. There is, however, a minor inhibition of [3H]ryanodine binding of cardiac SR at millimolar Ca2+ in the absence of adenine nucleotides.When Ca2+-induced Ca2+ release was examined from preloaded native SR vesicles, the release rates followed a normal biphasic curve, with Ca2+-induced inactivation at high [Ca2+] for both cardiac and skeletal SR. Our data suggest that the molecular basis of regulation of the SR Ca2+ release channel in cardiac and skeletal muscle is different, and that the cardiac SR channel isoform lacks a Ca2+-inactivated site.This work was supported by research grants from the National Institutes of Health HL13870 and AR38970, and the Texas Affiliate of the American Heart Association, 91A-188. M. Fill was the recipient of an NIH fellowship AR01834.  相似文献   

2.
Summary

In this work we show that ryanodine binding to junctional sarcoplasmic reticulum (SR) membranes or purified ryanodine receptor (RyR) is inhibited in a time — and concentration-dependent fashion by prior treatment with the carboxyl reagent dicyclohexylcarbodiimide (DCCD). Exposure of the membrane-bound RyR to the water soluble carboxyl reagents 1-ethyl-3 (3-(dimethylamino) propyl carbodiimide (EDC) or N-ethyl-pheny-lisoxazolium-3 -sulfonate (WRK) only slightly affects their ryanodine binding capacity. The amphipathic reagent N-ethoxy cabonyl-2-ethoxy-1, 2-dihydroquinaline (EEDQ) inhibited ryanodine binding at relatively high concentrations. DCCD-modifica-tion of the SR decreased the binding affinities of the RyR for ryanodine and Ca2+ by about 3- and 18-fold, respectively.

The single channel activity of SR membranes modified with DCCD and then incorporated into planar lipid bilayers is very low (5–8%) in comparison to control membranes. Application of DCCD to either the myoplasmic (c/s) or luminal (trans) side of the reconstituted unmodified channels resulted in complete inhibition of their single channel activities. Similar results were obtained with the water soluble reagent WRK applied to the myoplasmic, but not to the luminal side. The DCCD-modified non-active channel is re-activated by addition of ryanodine in the presence of 250üM Ca2+ and is stabilized in a sub-conductance state. With caffeine, ryanodine re-activated the channel in the presence of 100üM of Ca2+. The results suggest that a carboxyl residue(s) in the RyR is involved either in the binding of Ca2+, or in conformational changes that are produced by Ca2+ binding, and are required for the binding of ryanodine and the opening of the Ca2+ release channel.  相似文献   

3.
A 94 kDa large subunit thiol-protease, as identified by anti-calpain antibodies, has been isolated from skeletal muscle junctional sarcoplasmic reticulum (SR). This protease cleaves specifically the skeletal muscle ryanodine receptor (RyR)/Ca2+ release channel at one site resulting in the 375 kDa and 150 kDa fragments. The 94 kDa thiol-protease degrades neither other SR proteins nor the ryanodine receptor of cardiac nor brain membranes. The partially purified 94 kDa protease, like the SR associated protease, had an optimal pH of about 7.0, was absolutely dependent on the presence of thiol reducing reagents, and was completely inhibited by HgCl2, leupeptin and the specific calpain I inhibitor. However, while the SR membrane-associated protease requires Ca2+ at a submicromolar concentration, the isolated thiol-protease has lost the Ca2+ requirement. The 94 kDa thiol-protease had no effect on ryanodine binding but modified the channel activity of RyR reconstituted into planar lipid bilayer: in a time-dependent manner, the channel activity decreases and within several minutes the channel is converted into a subconducting state. The protease-modified channel activity is still Ca2+-dependent and ryanodine sensitive. This 94 kDa thiol-protease cross react with anti-calpain antibodies thus, may represent the novel large subunit of the skeletal muscle specific calpain p94. Received: 10 December 1996/Revised: 11 August 1997  相似文献   

4.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

5.
Summary Calcium conducting channels were studied in blebs of sarcoplasmic reticulum described by Stein & Palade (1988). The calcium channels had at least three conductance states (70 pS, 50 pS and 37 pS) and were weakly selective for calcium ions, with a permeability ratio Ca2+ to K+ of about 3.4. The open probability of the channel was strongly voltage dependent, decreasing at positive membrane voltages. 10 m ryanodine and 5 m ruthenium red had no effect on this channel; neither did millimolar concentrations of ATP, Mg2+, caffeine, and Ca2+, implying that the calcium conducting channels are not ryanodine receptors. Several calcium pump inhibitors—namely, vanadate, AlF 4 , reactive red 120, and cyclopiazonic acid—had obvious effects on the calcium conducting channels, suggesting that the calcium conducting channel of SR membrane blebs is some form of the SR calcium pump.We thank the National Science Foundation for steadfast support.We thank Drs. F. Cohen, A. Fox, R. Levis and E. Rios for much useful help and criticism and Dr. G. Inesi for sending us his paper while in press.  相似文献   

6.
In skeletal and cardiac muscle, contraction is initiated by the rapid release of Ca2+ ions from the intracellular membrane system, sarcoplasmic reticulum. Rapid-mixing vesicle ion flux and planar lipid bilayer-single-channel measurements have shown that Ca2+ release is mediated by a high-conductance, ligand-gated Ca2+ channel. Using the Ca2+ release-specific probe ryanodine, a 30 S protein complex composed of four polypeptides ofM r 400,000 has been isolated. Reconstitution of the purified skeletal and cardiac muscle 30 S complexes into planar lipid bilayers induced single Ca2+ channel currents with conductance and gating kinetics similar to those of native Ca2+ release channels. Electron microscopy revealed structural similarity with the protein bridges (feet) that span the transverse-tubule-sarcoplasmic reticulum junction. These results suggest that striated muscle contains an intracellular Ca2+ release channel that is identical with the ryanodine receptor and the transverse-tubule-sarcoplasmic reticulum spanning feet structures.  相似文献   

7.
Ca2+ released from the sarcoplasmic reticulum (SR) via ryanodine receptor type 2 (RYR2) is the key determinant of cardiac contractility. Although activity of RYR2 channels is primary controlled by Ca2+ entry through the plasma membrane, there is growing evidence that Ca2+ in the lumen of the SR can also be effectively involved in the regulation of RYR2 channel function. In the present study, we investigated the effect of luminal Ca2+ on the response of RYR2 channels reconstituted into a planar lipid membrane to caffeine and Ca2+ added to the cytosolic side of the channel. We performed two sets of experiments when the channel was exposed to either luminal Ba2+ or Ca2+. The given ion served also as a charge carrier. Luminal Ca2+ effectively shifted the EC50 for caffeine sensitivity to a lower concentration but did not modify the response of RYR2 channels to cytosolic Ca2+. Importantly, luminal Ca2+ exerted an effect on channel gating kinetics. Both the open and closed dwell times were considerably prolonged over the whole range (response to caffeine) or the partial range (response to cytosolic Ca2+) of open probability. Our results provide strong evidence that an alteration of the gating kinetics is the result of the interaction of luminal Ca2+ with the luminally located Ca2+ regulatory sites on the RYR2 channel complex.  相似文献   

8.
Summary Rapid mixing-vesicle ion flux and planar lipid bilayer-single channel measurements have shown that a high-conductance, ligand-gated Ca2+ release channel is present in heavy, junctional-derived membrane fractions of skeletal and cardiac muscle sarcoplasmic reticulum. Using the release channel-specific probe, ryanodine, a 30S protein complex composed of polypeptides of Mr 400 000 has been isolated from cardiac and skeletal muscle. Reconstitution of the complex into planar lipid bilayers has revealed a Ca2+ conductance with properties characteristic of the native Ca2+ release channel.  相似文献   

9.
Ryanodine is a neutral plant alkaloid which functions as a probe for an intracellular Ca2+ release channel (ryanodine receptor) in excitable tissues. Using [3H]ryanodine, a 30 S protein complex comprised of four polypeptides of Mr 565,000 has been isolated and functionally reconstituted into planar lipid bilayers. The effects of salt concentration and divalent cations on skeletal muscle sarcoplasmic reticulum [3H]ryanodine binding and Ca2+ release channel activity have been compared. These studies suggest that ryanodine is a good probe for investigating the function of the release channel.  相似文献   

10.
The association of an endogenous, Ca2+-dependent cysteine-protease with the junctional sarcoplasmic reticulum (SR) is demonstrated. The activity of this protease is strongly stimulated by dithiothreitol (DTT), cysteine and β-mercaptoethanol, and is inhibited by iodoacetamide, mercuric chloride and leupeptin, but not by PMSF. The activity of this thiol-protease is dependent on Ca2+ with half-maximal activity obtained at 0.1 μm and maximal activity at 10 μm. Mg2+ is also an activator of this enzyme (CI50=22 μm). These observations, together with the neutral pH optima and inhibition by the calpain I inhibitor, suggest that this enzyme is of calpain I type. This protease specifically cleaves the ryanodine receptor monomer (510 kD) at one site to produce two fragments with apparent molecular masses of 375 and 150 kD. The proteolytic fragments remain associated as shown by purification of the cleaved ryanodine receptor. The calpain binding site is identified as a PEST (proline, glutamic acid, serine, threonine-rich) region in the amino acid sequence GTPGGTPQPGVE, at positions 1356–1367 of the RyR and the cleavage site, the calmodulin binding site, at residues 1383–1400. The RyR cleavage by the Ca2+-dependent thiol-protease is prevented in the presence of ATP (1–5 mm) and by high NaCl concentrations. This cleavage of the RyR has no effect on ryanodine binding activity but stimulates Ca2+ efflux. A possible involvement of this specific cleavage of the RyR/Ca2+ release channel in the control of calpain activity is discussed.  相似文献   

11.
The sarcoplasmic reticulum Ca2+ ATPase 1 (SERCA 1) is able to handle the energy derived from ATP hydrolysis in such a way as to determine the parcel of energy that is used for Ca2+ transport and the fraction that is converted into heat. In this work we measured the heat production by SERCA 1 in the two sarcoplasmic reticulum (SR) fractions: the light fraction (LSR), which is enriched in SERCA and the heavy fraction (HSR), which contains both the SERCA and the ryanodine Ca2+ channel. We verified that although HSR cleaved ATP at faster rate than LSR, the amount of heat released during ATP hydrolysis by HSR was smaller than that measured by LSR. Consequently, the amount of heat released per mol of ATP cleaved (ΔHcal) by HSR was lower compared to LSR. In HSR, the addition of 5 mM Mg2+ or ruthenium red, conditions that close the ryanodine Ca2+ channel, promoted a decrease in the ATPase activity, but the amount of heat released during ATP hydrolysis remained practically the same. In this condition, the ΔHcal values of ATP hydrolysis increased significantly. Neither Mg2+ nor ruthenium red had effect on LSR. Thus, we conclude that heat production by SERCA 1 depends on the region of SR in which the enzyme is inserted and that in HSR, the ΔHcal of ATP hydrolysis by SERCA 1 depends on whether the ryanodine Ca2+ channel is opened or closed.  相似文献   

12.
Ca2+-dependent inhibition of native and isolated ryanodine receptor (RyR) calcium release channels from sheep heart and rabbit skeletal muscle was investigated using the lipid bilayer technique. We found that cytoplasmic Ca2+ inhibited cardiac RyRs with an average K m = 15 mm, skeletal RyRs with K m = 0.7 mm and with Hill coefficients of 2 in both isoforms. This is consistent with measurements of Ca2+ release from the sarcoplasmic reticulum (SR) in skinned fibers and with [3H]-ryanodine binding to SR vesicles, but is contrary to previous bilayer studies which were unable to demonstrate Ca2+-inhibition in cardiac RyRs (Chu, Fill, Stefani &; Entman (1993) J. Membrane Biol. 135, 49–59). Ryanodine prevented Ca2+ from inhibiting either cardiac or skeletal RyRs. Ca2+-inhibition in cardiac RyRs appeared to be the most fragile characteristic of channel function, being irreversibly disrupted by 500 mm Cs+, but not by 500 mm K+, in the cis bath or by solublization with the detergent CHAPS. These treatments had no effect on channel regulation by AMP-PNP, caffeine, ryanodine, ruthenium red, or Ca2+-activation. Ca2+-inhibition in skeletal RyRs was retained in the presence of 500 mm Cs+. Our results provide an explanation for previous findings in which cardiac RyRs in bilayers with 250 mm Cs+ in the solutions fail to demonstrate Ca2+-inhibition, while Ca2+-inhibition of Ca2+ release is observed in vesicle studies where K+ is the major cation. A comparison of open and closed probability distributions from individual RyRs suggested that the same gating mechanism mediates Ca2+-inhibition in skeletal RyRs and cardiac RyRs, with different Ca2+ affinities for inhibition. We conclude that differences in the Ca2+-inhibition in cardiac and skeletal channels depends on their Ca2+ binding properties.  相似文献   

13.
Cardiac plasma membrane Ca2+/Mg2+ ecto-ATPase (myoglein) requires millimolar concentrations of either Ca2+ or Mg2+ for maximal activity. In this paper, we report its localization by employing an antiserum raised against the purified rat cardiac Ca2+/Mg2+ ATPase. As assessed by Western blot analysis, the antiserum and the purified immunoglobulin were specific for Ca2+/Mg2+ ecto-ATPase; no cross reaction was observed towards other membrane bound enzymes such as cardiac sarcoplasmic reticulum Ca2+-pump ATPase or sarcolemmal Ca2+-pump ATPase. On the other hand, the cardiac Ca2+/Mg2+ ecto-ATPase was not recognized by antibodies specific for either cardiac sarcoplasmic reticulum Ca2+-pump ATPase or plasma membrane Ca2+-pump ATPase. Furthermore, the immune serum inhibited the Ca2+/Mg2+ ecto-ATPase activity of the purified enzyme preparation. Immunofluorescence of cardiac tissue sections and neonatal cultured cardiomyocytes with the Ca2+/Mg2+ ecto-ATPase antibodies indicated the localization of Ca2+/Mg2+ ecto-ATPase in association with the plasma membrane of myocytes, in areas of cell-matrix or cell-cell contact. Staining for the Ca2+/Mg2+ ecto-ATPase was not cardiac specific since the antibodies detected the presence of membrane proteins in sections from skeletal muscle, brain, liver and kidney. The results indicate that Ca2+/Mg2+ ecto-ATPase is localized to the plasma membranes of cardiomyocytes as well as other tissues such as brain, liver, kidney and skeletal muscle.  相似文献   

14.
Using density gradient centrifugation and [3H]ryanodine as a specific marker, the ryanodine receptor-Ca2+ release channel complex from Chaps-solubilized canine cardiac sarcoplasmic reticulum (SR) has been purified in the form of an approximately 30 S complex, comprised of Mr approximately 400,000 polypeptides. Purification resulted in a specific activity of approximately 450 pmol bound ryanodine/mg of protein, a 60-70% recovery of ryanodine binding activity, and retention of the high affinity ryanodine binding site (KD = 3 nM). Negative stain electron microscopy revealed a 4-fold symmetric, four-leaf clover structure, which could fill a box approximately 30 x 30 nm and was thus morphologically similar to the SR-transverse-tubule, junctionally associated foot structure. The structural, sedimentation, and ryanodine binding data strongly suggest there is one high affinity ryanodine binding site/30 S complex, comprised of four Mr approximately 400,000 subunits. Upon reconstitution into planar lipid bilayers, the purified complex exhibited a Ca2+ conductance (70 pS in 50 mM Ca2+) similar to that of the native cardiac Ca2+ release channel (75 pS). The reconstituted complex was also found to conduct Na+ (550 pS in 500 mM Na+) and often to display complex Na+ subconducting states. The purified channel could be activated by micromolar Ca2+ or millimolar ATP, inhibited by millimolar Mg2+ or micromolar ruthenium red, and modified to a long-lived open subconducting state by ryanodine. The sedimentation, subunit composition, morphological, and ryanodine binding characteristics of the purified cardiac ryanodine receptor-Ca2+ release channel complex were similar to those previously described for the purified ryanodine receptor-Ca2+ release channel complex from fast-twitch skeletal muscle.  相似文献   

15.
Summary Potassium channels in membranes of isolatedNecturus enterocytes were studied using the patch-clamp technique. The most frequent channel observed had a conductance of 170 pS and reversal potential of 0 mV in symmetrical potassium-rich solutions. Channels were highly K+ selective. Channel activity was modulated by membrane potential and cytosolic Ca2+ concentration. Channel openings occurred in characteristic bursts separated by long closures. During bursts openings were interrupted by brief closures. Two gating modes controlled channel opening. The primary gate's sensitivity to intracellular Ca2+ concentration and membrane potential crucially determined long duration closures and bursting. In comparison, the second gate determining brief closures was largely insensitive to voltage and intracellular Ca2+ concentration. The channel was reversibly blocked by cytosolic barium exposure in a voltage-sensitive manner. Blockade reduced open-state probability without altering single-channel conductance and could be described, at relatively high Ca2+ concentration, by a three-state model where Ba2+ interacted with the open channel with a dissociation constant of about 10–4 m at 0 mV.  相似文献   

16.
The effect of Hg2+ and Ch3-Hg+ on the passive and active transport properties of the Ca2+-Mg2+-ATPase-rich fraction of skeletal sarcoplasmic reticulum (SR) is reported. The agents abolish active transport, at 10–5 and 10–4 M concentrations, respectively. Addition of the mercurials was also shown to release actively accumulated Ca2+. The mercurials increase the passive Ca2+ and Mg2+ permeability in the absence of ATP at the same concentrations at which they inhibit transport. It is proposed that both effects are the result of direct binding of the mercurials to the SH groups of the Ca2+-Mg2+-ATPase pump, altering the conformational equilibria of the pump. The agents were also shown to increase the passive KCl permeability. The SR preparation consists of two vesicle populations with respect to K+ permeability, one with rapid KCl equilibration faciliated by a monovalent cation channel function and one with slow KCl equilibration. The mercurials increase the rates of KCl equilibration in both fractions, but produce higher rates in the fraction containing the channel function. The results are discussed in terms of pump and channel function and are compared with results for the electrical behavior of the Ca2+-Mg2+-ATPase and other SR proteins in black lipid membranes, as presented by others.  相似文献   

17.
Effects of endotoxin administration on the ATP-dependent Ca2+ uptake by canine cardiac sarcoplasmic reticulum (SR) were investigated. Results obtained 4 h after endotoxin administration show that ATP-dependent Ca2+ uptake by cardiac SR was decreased by 27–43% (p < 0.05). Kinetic analysis indicates that the Vmax values for Ca2+ and for ATP were significantly decreased while the S0.5 and the Hill coefficient values were not affected during endotoxin shock. Magnesium (1–5 mM) stimulated while vanadate (25–50 M) inhibited the ATP-dependent Ca2+ uptake, but the Mg2+-stimulated and the vanadate-inhibited activities remained significantly lower in the endotoxin-treated animals. Phosphorylation of SR by the exogenously added catalytic subunit of the cAMP-dependent protein kinase or by the addition of calmodulin stimulated the ATP-dependent Ca2+ uptake activities both in the control and endotoxin-injected dogs. However, the phosphorylation-stimulated activities remained significantly lower in the endotoxin-injected dogs. Dephosphorylation of SR decreased the ATP-dependent Ca2+ uptake, but the half-time required for the maximal dephosphorylation was reduced by 31% (p < 0.05) 4 h post-endotoxin. These data indicate that endotoxin administration impairs the ATP-dependent Ca2+ uptake in canine cardiac SR and the endotoxininduced impairment in the SR calcium transport is associated with a mechanism involving a defective phosphorylation and an accelerated dephosphorylation of SR membrane protein. Since ATP-dependent Ca2+ uptake by cardiac SR plays an important role in the regulation of the homeostatic levels of the contractile calcium, our findings may provide a biochemical explanation for myocardial dysfunction that occurs during endotoxin shock.  相似文献   

18.
M. Piñeros  M. Tester 《Planta》1995,195(4):478-488
A new mechanism for calcium flux in wheat (Triticum aestivum L.) root cells has been characterized. Membrane vesicles were enriched in plasma membrane using aqueous-polymer two-phase partitioning and incorporated into artificial lipid bilayers, allowing characterization of single channels under voltage-clamp conditions. Membrane marker activities showed 74% and 83% purity in plasma membrane when expressed in terms of membrane area and activity, respectively. Since membrane vesicles obtained by aqueous-polymer two-phase partitioning yield a population of membrane vesicles of regular orientation, and vesicle fusion into planar lipid bilayers occurs in a defined manner, the orientation of the channel upon vesicle incorporation could be determined. Thus ionic activities and potentials could be controlled appropriately on what we propose to be the cytosolic (trans) and extracellular (cis) faces of the channel. The unitary conductance in symmetrical 1 mM CaCl2 was 27±0.4 (pS). The correlation between the theoretical and observed reversal potentials in asymmetrical conditions showed that the channel was highly selective for Ca2+ over Cl. Experiments simulating physiological ionic conditions showed a PCa 2+/PK + of 17–26, decreasing in this range as the extracellular CaCl2 concentration increased from 0.1 to 1 mM. The channel was also permeable to the essential nutrient ions, Mg2+ and Mn2+. The open probability of the channel was strongly dependent on the membrane potential. Inactivation with time was observed at more negative membrane potentials, and was immediately reversed as soon as the membrane potential was decreased. At membrane potentials more negative than -130mV, the channel remained mainly in the closed state, suggesting that in vivo the channel would remain largely closed and would open only upon membrane depolarization. The channel was blocked by micromolar concentrations of extracellular verapamil and trivalent cations, Al3+ being the most effective of those tested. Exposure of the cytosolic and extracellular sides of the channel to inositol 1,4,5-trisphosphate had no effect on the channel activity. We suggest a plasma-membrane origin for the channel as shown by biochemical and electrophysiological evidence, and discuss possible physiological roles of this channel, both in Ca2+ uptake into roots and in signal transduction.Abbreviations IP3 1,4,5-trisphosphate - PM plasma membrane We wish to thank Dr. Christa Niemietz, Dr. Robert Reid and Prof. Andrew Smith for valuable discussions. This work was supported by the Australian Research Council and an OPRS award to M.P.  相似文献   

19.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

20.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号