首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Constitutively-activated tyrosine kinase mutants, such as BCR/ABL, FLT3-ITD, and Jak2-V617F, play important roles in pathogenesis of hematopoietic malignancies and in acquisition of therapy resistance. We previously found that hematopoietic cytokines enhance activation of the checkpoint kinase Chk1 in DNA-damaged hematopoietic cells by inactivating GSK3 through the PI3K/Akt signaling pathway to inhibit apoptosis. Here we examine the possibility that the kinase mutants may also protect DNA-damaged cells by enhancing Chk1 activation. In cells expressing BCR/ABL, FLT3-ITD, or Jak2-V617F, etoposide induced a sustained activation of Chk1, thus leading to the G2/M arrest of cells. Inhibition of these kinases by their inhibitors, imatinib, sorafenib, or JakI-1, significantly abbreviated Chk1 activation, and drastically enhanced apoptosis induced by etoposide. The PI3K inhibitor GD-0941 or the Akt inhibitor MK-2206 showed similar effects with imatinib on etoposide-treated BCR/ABL-expressing cells, including those expressing the imatinib-resistant T315I mutant, while expression of the constitutively activated Akt1-myr mutant conferred resistance to the combined treatment of etoposide and imatinib. GSK3 inhibitors, including LiCl and SB216763, restored the sustained Chk1 activation and mitigated apoptosis in cells treated with etoposide and the inhibitors for aberrant kinases, PI3K, or Akt. These observations raise a possilibity that the aberrant kinases BCR/ABL, FLT3-ITD, and Jak2-V617F may prevent apoptosis induced by DNA-damaging chemotherapeutics, at least partly through enhancement of the Chk1-mediated G2/M checkpoint activation, by inactivating GSK3 through the PI3K/Akt signaling pathway. These results shed light on the molecular mechanisms for chemoresistance of hematological malignancies and provide a rationale for the combined treatment with chemotherapy and the tyrosine kinase or PI3K/Akt pathway inhibitors against these diseases.  相似文献   

2.
Phosphatidylinositol 3-kinase (PI-3K) has been linked to promitogenic responses in splenic B cells following B cell Ag receptor (BCR) cross-linking; however identification of the signaling intermediates that link PI-3K activity to the cell cycle remains incomplete. We show that cyclin D2 induction is blocked by the PI-3K inhibitors wortmannin and LY294002, which coincides with impaired BCR-mediated mitogen-activated protein/extracellular signal-related kinase kinase (MEK)1/2 and p42/44ERK phosphorylation on activation residues. Cyclin D2 induction is virtually absent in B lymphocytes from mice deficient in the class I(A) PI-3K p85alpha regulatory subunit. In contrast to studies with PI-3K inhibitors, which inhibit all classes of PI-3Ks, the p85alpha regulatory subunit is not required for BCR-induced MEK1/2 and p42/44ERK phosphorylation, suggesting the contribution of another PI-3K family members in MEK1/2 and p42/44ERK activation. However, p85alpha(-/-) splenic B cells are defective in BCR-induced IkappaB kinase beta and IkappaBalpha phosphorylation. We demonstrate that NF-kappaB signaling is required for cyclin D2 induction via the BCR in normal B cells, implicating a possible link with the defective IkappaB kinase beta and IkappaBalpha phosphorylation in p85alpha(-/-) splenic B cells and their ability to induce cyclin D2. These results indicate that MEK1/2-p42/44ERK and NF-kappaB pathways link PI-3K activity to Ag receptor-mediated cyclin D2 induction in splenic B cells.  相似文献   

3.
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.  相似文献   

4.
The p85alpha subunit of phosphatidylinositol 3-kinase (PI-3k) forms a complex with a protein network associated with oncogenic fusion tyrosine kinases (FTKs) such as BCR/ABL, TEL/ABL, TEL/JAK2, TEL/PDGFbetaR, and NPM/ALK, resulting in constitutive activation of the p110 catalytic subunit of PI-3k. Introduction of point mutations in the N-terminal and C-terminal SH2 domain and SH3 domain of p85alpha, which disrupt their ability to bind phosphotyrosine and proline-rich motifs, respectively, abrogated their interaction with the BCR/ABL protein network. The p85alpha mutant protein (p85mut) bearing these mutations was unable to interact with BCR/ABL and other FTKs, while its binding to the p110alpha catalytic subunit of PI-3k was intact. In addition, binding of Shc, c-Cbl, and Gab2, but not Crk-L, to p85mut was abrogated. p85mut diminished BCR/ABL-dependent activation of PI-3k and Akt kinase, the downstream effector of PI-3k. This effect was associated with the inhibition of BCR/ABL-dependent growth of the hematopoietic cell line and murine bone marrow cells. Interestingly, the addition of interleukin-3 (IL-3) rescued BCR/ABL-transformed cells from the inhibitory effect of p85mut. SCID mice injected with BCR/ABL-positive hematopoietic cells expressing p85mut survived longer than the animals inoculated with BCR/ABL-transformed counterparts. In conclusion, we have identified the domains of p85alpha responsible for the interaction with the FTK protein network and transduction of leukemogenic signaling.  相似文献   

5.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

6.
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms by which vanadate mediates adverse effects are not well understood. The present study investigated the vanadate-induced phosphorylation of Akt and p70S6K, two kinases known to be vital for cell survival, growth, transformation, and transition of the cell cycle in mammals. Exposure of mouse epidermal JB6 cells to vanadium led to phosphorylation of Akt and p70S6K in a time- and dose-dependent manner. Vanadium exposure also caused translocation of atypical isoforms of PKC (lambda, zeta) from the cytosol to the membrane, but had no effect on PKCalpha translocation, suggesting that the atypical PKCs (aPKC) were specifically involved in vanadium-induced cellular response. Importantly, overexpression of a dominant negative mutant PKClambda blocked Akt phosphorylation at Ser473 and Thr308, whereas it did not inhibit p70S6k phosphorylation at Thr389 and Thr421/Ser424, suggesting that aPKC activation is specifically involved in vanadium-induced activation of Akt, but not in activation of p70S6k. Furthermore, vanadium-induced p70S6k phosphorylation at Thr389 and Thr421/Ser424 and Akt phosphorylation at Thr308 occurred through a PI-3K-dependent pathway because a PI-3K dominant negative mutant inhibited induction as compared with vector control cells. These results indicate that there was a differential role of aPKC in vanadate-induced phosphorylation of Akt and p70S6k, suggesting that signal transduction pathways leading to the activation of Akt and p70S6k were different.  相似文献   

7.
8.
Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Deltap85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.  相似文献   

9.
5-Methylchrysene has been found to be a complete carcinogen in laboratory animals. However, the tumor promotion effects of (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) remain unclear. In the present work, we found that 5-MCDE induced marked activator protein-1 (AP-1) activation in Cl41 cells. 5-MCDE also induced a marked activation of phosphatidylinositol 3-kinase (PI-3K). Inhibition of PI-3K impaired 5-MCDE-induced AP-1 transactivation, suggesting that PI-3K is an upstream kinase involved in AP-1 activation by 5-MCDE. Furthermore, we found that Akt is a PI-3K downstream mediator for 5-MCDE-induced AP-1 transactivation, whereas another PI-3K downstream kinase, p70(S6K), was not involved in AP-1 activation by 5-MCDE. Moreover, inhibition of Akt activation blocked 5-MCDE-induced activation of extracellular signal-regulated protein kinases (ERKs) and c-Jun NH(2)-terminal kinases (JNKs), whereas it did not affect p38K activation. Consistently, overexpression of a dominant-negative mutant of ERK2 or JNK1 blocked the AP-1 activation by 5-MCDE. These results demonstrate that 5-MCDE is able to induce AP-1 activation, and the AP-1 induction is specifically through a PI-3K/Akt-dependent and p70(S6K)-independent pathway.  相似文献   

10.
Under normal cell physiology, a balance between cell survival and apoptosis is crucial for homeostasis. Many studies have demonstrated that apoptosis is modulated by cell survival stimuli. Active Akt, a common mediator of cell survival signals, has been shown to inhibit apoptosis by attenuating activity of pro-apoptotic factors Bad and caspase-9. However, the anti-apoptotic mechanisms mediated by various cell survival signals are poorly understood. Human prostate cancer LNCaP cells, known to contain constitutively activated Akt as a result of a frame-shift mutation in PTEN, an inhibitor of PI-3K/Akt pathway, were observed to be completely resistant to TRAIL-induced apoptosis. In agreement with the known action of Akt, blockade of the PI-3K/Akt pathway rendered LNCaP cells highly susceptible to TRAIL. Importantly, active PI-3K/Akt prevented processing/activation of caspase-3, a phenomenon associated with the function of inhibitor of apoptosis proteins (IAPs). In fact, inhibition of PI-3K activity using Wortmannin significantly decreased the protein levels of IAPs, concomitantly promoting processing/activation of caspase-3 and TRAIL-induced apoptosis. My data indicate that in addition to blocking Bad and caspase-9 through Akt, PI-3K also inhibits caspase-3 through up-regulating IAPs, thereby attenuates apoptosis.  相似文献   

11.
Imatinib mesylate (STI571), a specific inhibitor of BCR/ABL tyrosine kinase, exhibits potent antileukemic effects in the treatment of chronic myelogenous leukemia (CML). However, the precise mechanism by which inhibition of BCR/ABL activity results in pharmacological responses remains unknown. BCR/ABL-positive human K562 CML cells resistant to doxorubicin (K562DoxR) and their sensitive counterparts (K562DoxS) were used to determine the mechanism by which the STI571 inhibitor may overcome drug resistance. K562 wild type cells and CCRF-CEM lymphoblastic leukemia cells without BCR/ABL were used as controls. The STI571 specificity was examined by use of murine pro-B lymphoid Baf3 cells with or without BCR/ABL kinase expression. We examined kinetics of DNA repair after cell treatment with doxorubicin in the presence or absence of STI571 by the alkaline comet assay. The MTT assay was used to estimate resistance against doxorubicin and Western blot analysis with Crk-L antibody was performed to evaluate BCR/ABL kinase inhibition by STI571. We provide evidence that treatment of CML-derived BCR/ABL-expressing leukemia K562 cells with STI571 results in the inhibition of DNA repair and abrogation of the resistance of these cells to doxorubicin. We found that doxorubicin-resistant K562DoxR cells exhibited accelerated kinetics of DNA repair compared with doxorubicin-sensitive K562DoxS cells. Inhibition of BCR/ABL kinase in K562DoxR cells with 1 microM STI571 decreased the kinetics of DNA repair and abrogated drug resistance. The results suggest that STI571-mediated inhibition of BCR/ABL kinase activity can affect the effectiveness of the DNA-repair pathways, which in turn may enhance drug sensitivity of leukemia cells.  相似文献   

12.
Phosphoinositide 3-kinase (PI3K) activation and synthesis of phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2) and phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3) lipids mediate growth factor signaling that leads to cell proliferation, migration, and survival. PI3K-dependent activation of Akt is critical for myoblast differentiation induced by serum withdrawal, suggesting that in these cells PI3K signaling is activated in an unconventional manner. Here we investigate the mechanisms by which PI3K signaling and Akt are regulated during myogenesis. We report that PI-3,4-P2 and PI-3,4,5-P3 accumulated in the plasma membranes of serum-starved 3T3-L6 myoblasts due to de novo synthesis and increased lipid stability. Surprisingly, only newly synthesized lipids were capable of activating Akt. Knockdown of the lipid phosphatase PTEN moderately increased PI3K lipids but significantly increased Akt phosphorylation and promoted myoblast differentiation. Knockdown of the lipid phosphatase Ship2, on the other hand, dramatically increased the steady-state levels of PI-3,4,5-P3 but did not affect Akt phosphorylation and increased apoptotic cell death. Together, these results reveal the existence of two distinct pools of PI3K lipids in differentiating 3T3-L6 myoblasts: a pool of nascent lipids that is mainly dephosphorylated by PTEN and is capable of activating Akt and promoting myoblast differentiation and a stable pool that is dephosphorylated by Ship2 and is unable to activate Akt.  相似文献   

13.
Efforts in prevention and control of tuberculosis suffer from the lack of detailed knowledge of the mechanisms used by pathogenic mycobacteria for survival within host cell macrophages. The exploitation of host cell signaling pathways to the benefit of the pathogen is a phenomenon that deserves to be looked into in detail. We have tested the hypothesis that lipoarabinomannan (LAM) from the virulent species of Mycobacterium tuberculosis possesses the ability to modulate signaling pathways linked to cell survival. The Bcl-2 family member Bad is a proapoptotic protein. Phosphorylation of Bad promotes cell survival in many cell types. We demonstrate that man-LAM stimulates Bad phosphorylation in a phosphatidylinositol 3-kinase (PI-3K)-dependent pathway in THP-1 cells. Man-LAM activated PI-3K. LAM-stimulated phosphorylation of Bad was abrogated in cells transfected with a dominant-negative mutant of PI-3K (Delta p85), indicating that activation of PI-3K is sufficient to trigger phosphorylation of Bad by LAM. Since phosphorylation of Bad occurred at serine 136, the target of the serine/threonine kinase Akt, the effect of LAM on Akt kinase activity was tested. Man-LAM could activate Akt as evidenced from phosphorylation of Akt at Thr(308) and by the phosphorylation of the exogenous substrate histone 2B. Akt activation was abrogated in cells transfected with Deltap85. The phosphorylation of Bad by man-LAM was abrogated in cells transfected with a kinase-dead mutant of Akt. These results establish that LAM-mediated Bad phosphorylation occurs in a PI-3K/Akt-dependent manner. It is therefore the first demonstration of the ability of a mycobacterial virulence factor to up-regulate a signaling pathway involved in cell survival. This is likely to be one of a number of virulence-associated mechanisms by which bacilli control host cell apoptosis.  相似文献   

14.
15.
16.
The leukemogenic potential of BCR/ABL oncoproteins depends on their tyrosine kinase activity and involves the activation of several downstream effectors, some of which are essential for cell transformation. Using electrophoretic mobility shift assays and Southwestern blot analyses with a double-stranded oligonucleotide containing a zinc finger consensus sequence, we identified a 68 kDa DNA-binding protein specifically induced by BCR/ABL. The peptide sequence of the affinity-purified protein was identical to that of the RNA-binding protein FUS (also called TLS). Binding activity of FUS required a functional BCR/ABL tyrosine kinase necessary to induce PKCbetaII-dependent FUS phosphorylation. Moreover, suppression of PKCbetaII activity in BCR/ABL-expressing cells by treatment with the PKCbetaII inhibitor CGP53353, or by expression of a dominant-negative PKCbetaII, markedly impaired the ability of FUS to bind DNA. Suppression of FUS expression in myeloid precursor 32Dcl3 cells transfected with a FUS antisense construct was associated with upregulation of the granulocyte-colony stimulating factor receptor (G-CSFR) and downregulation of interleukin-3 receptor (IL-3R) beta-chain expression, and accelerated G-CSF-stimulated differentiation. Downregulation of FUS expression in BCR/ABL-expressing 32Dcl3 cells was associated with suppression of growth factor-independent colony formation, restoration of G-CSF-induced granulocytic differentiation and reduced tumorigenic potential in vivo. Together, these results suggest that FUS might function as a regulator of BCR/ABL leukemogenesis, promoting growth factor independence and preventing differentiation via modulation of cytokine receptor expression.  相似文献   

17.
目的:探讨胰岛素样生长因子-1(IGF-I)通过磷酯酰肌醇3-激酶/蛋白激酶B(PI-3K/Akt)信号通路对结肠癌细胞株SW480凋亡率的影响及其凋亡抑制蛋白survivin表达水平的变化。方法:培养结肠癌SW480细胞株,实验分成三组:未加IGF-I空白组、IGF-I刺激组、IGF-I+LY294002阻断组,检测阻断剂LY294002是否阻断PI-3K/Akt通路(Western Blot检测三组P-Akt表达情况);Western Blot及免疫荧光观察三组survivin蛋白表达变化;MTT法检测细胞增殖活性,流式细胞术检测细胞凋亡情况。结果:Western blot结果显示LY294002可抑制IGF-I诱导的p-Akt的表达(P〈0.05);阻断IGF-I诱导的PI-3K/Akt通路后MTT显示结肠癌细胞SW480增殖抑制率升高(P〈0.05),流式细胞术分析显示凋亡率明显上升(P〈0.05);Western blot及免疫荧光结果显示LY294002可抑制IGF-I诱导的survivin的表达(P〈0.05)。结论:IGF-I可通过PI-3K/Akt通路诱导survivin表达,从而抑制结肠癌细胞SW480的凋亡。  相似文献   

18.
Serine/threonine kinase Akt is a downstream effector protein of phosphatidylinositol-3-kinase (PI-3K). Many integrins can function as positive modulators of the PI-3K/Akt pathway. Integrin alpha 2 beta 1 is a collagen receptor that has been shown to induce specific signals distinct from those activated by other integrins. Here, we found that, in contrast what was found for cells adherent to fibronectin, alpha 2 beta 1-mediated cell adhesion to collagen leads to dephosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3 beta) and concomitantly to the induction of protein serine/threonine phosphatase 2A (PP2A) activity. PP2A activation can be inhibited by mutation in the alpha 2 cytoplasmic domain and by a function-blocking anti-alpha 2 antibody. Akt can be coprecipitated with PP2A, and coexpression of Akt with PP2Ac (catalytic subunit) inhibits Akt kinase activity. Integrin alpha 2 beta 1-related activation of PP2A is dependent on Cdc42. These results indicate that cell adhesion to collagen modulates Akt activity via the alpha 2 beta 1-induced activation of PP2A.  相似文献   

19.
Recent studies suggest that activation of peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) promotes cancer cell survival. We previously demonstrated that a selective PPARbeta/delta agonist, GW501516, stimulated human non-small cell lung carcinoma (NSCLC) cell growth. Here, we explore the mechanisms responsible for this effect. We show that GW501516 decreased phosphate and tensin homolog deleted on chromosome 10 (PTEN), a tumor suppressor known to decrease cell growth and induce apoptosis. Activation of PPARbeta/delta and phosphatidylinositol 3-kinase (PI3K)/Akt signaling was associated with inhibition of PTEN. GW501516 increased NF-kappaB DNA binding activity and p65 protein expression through activation of PPARbeta/delta and PI3K/Akt signals and enhanced the physical interactions between PPARbeta/delta and p65 protein. Conversely, inhibition of PI3K and silencing of p65 by small RNA interference (siRNA) blocked the effect of GW501516 on PTEN expression and on NSCLC cell proliferation. GW501516 also inhibited IKBalpha protein expression. Silencing of IKBalpha enhanced the effect of GW501516 on PTEN protein expression and on cell proliferation. It also augmented the GW501516-induced complex formation of PPARbeta/delta and p65 proteins. Overexpression of PTEN suppressed NSCLC cell growth and eliminated the effect of GW501516 on phosphorylation of Akt. Together, our observations suggest that GW501516 induces the proliferation of NSCLC cells by inhibiting the expression of PTEN through activation of PPARbeta/delta, which stimulates PI3K/Akt and NF-kappaB signaling. Overexpression of PTEN overcomes this effect and unveils PPARbeta/delta and PTEN as potential therapeutic targets in NSCLC.  相似文献   

20.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号