共查询到20条相似文献,搜索用时 15 毫秒
1.
The anomeric specificity of Escherichia coli CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase was investigated by NMR using 13C-labeled N-acetylneuraminic acid (NeuAc). Consumption of the beta-anomer of [2-13C]N-acetylneuraminic acid was observed upon addition of enzyme, with a concomitant appearance of an anomeric resonance for CMP-N-acetylneuraminic acid. Inhibition by substrate analogues the anomeric oxygen was determined in a similar manner using [2-13C,(50 atom %)18O]N-acetylneuraminic acid. An upfield shift of 1.5 Hz in the anomeric resonance of both the [13C]NeuAc substrate and CMP-[13C]NeuAc product was observed due to the 18O substitution. This result implies conservation of the NeuAc oxygen. Results of steady-state kinetic analysis suggest a sequential-type mechanism and therefore no covalent intermediate. Thus, CMP-beta-NeuAc is probably formed by a direct transfer of the anomeric oxygen of beta-NeuAc to the alpha-phosphate of CTP. 相似文献
2.
S L Shames E S Simon C W Christopher W Schmid G M Whitesides L L Yang 《Glycobiology》1991,1(2):187-191
The gene encoding CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) in Escherichia coli serotype O7 K1 was isolated and overexpressed in E.coli W3110. Maximum expression of 8-10% of the soluble E.coli protein was achieved by placing the gene with an engineered 5'-terminus and Shine-Dalgarno sequence into a pKK223 vector derivative behind the tac promoter. The overexpressed synthetase was purified to greater than 95% homogeneity in a single step by chromatography on high titre Orange A Matrex dye resin. Enzyme purified by this method was used directly for the synthesis of CMP-NeuAc and derivatives. The enzymatic synthesis of CMP-NeuAc was carried out on a multigram scale using equimolar CTP and N-acetylneuraminic acid as substrates. The resultant CMP-NeuAc, isolated as its disodium salt by ethanol precipitation, was prepared in an overall yield of 94% and was judged to be greater than 95% pure by 1H NMR analysis. N-Carbomethoxyneuraminic acid and N-carbobenzyloxyneuraminic acid were also found to be substrates of the enzyme; 5-azidoneuraminic acid was not a substrate of the enzyme. N-Carbomethoxyneuraminic acid was coupled to CMP at a rate similar to that observed with NeuAc, whereas N-carbobenzyloxyneuraminic acid was coupled greater than 100-fold more slowly. The high level of expression achieved with the E.coli synthetase, together with the high degree of purity readily obtainable from crude cell extracts, make the recombinant bacterial enzyme the preferred catalyst for the enzymatic synthesis of CMP-N-acetylneuraminic acid. 相似文献
3.
The nucleotide sequence of the neuC gene of the Escherichia coli K1 capsule gene cluster encodes a protein with a predicted molecular weight of 44,210 containing 391 amino acids. A chimeric protein with beta-galactosidase fused to the carboxy terminus of the neuC gene product (P7) was constructed and purified. Its amino-terminal sequence confirmed the prediction from the nucleotide sequence that the neuC gene overlaps the distal end of the neuA gene by a single base pair. Both the neuA and neuC genes are coexpressed under the control of a single upstream T7 or tac promoter, suggesting that neuA and neuC are part of an operon. 相似文献
4.
Escherichia coli CMP-NeuAc synthetase (EC 2.7.7.43) catalyzes the synthesis of CMP-NeuAc from CTP and NeuAc, which is essential for the formation of capsule polysialylate for strain K1. Alignment of the amino acid sequence of E. coli CMP-NeuAc synthetase with those from other bacterial species revealed that the conserved motifs were located in its N termini, whereas the C terminus appeared to be redundant. Based on this information, a series of deletions from the 3'-end of the CMPNeuAc synthetase coding region was constructed and expressed in E. coli. As a result, the catalytic domain required for CMP-NeuAc synthetase was found to be in the N-terminal half consisting of amino acids 1-229. Using the strategy of tertiary structure prediction based on the homologous search of the secondary structure, the C-terminal half was recognized as an alpha1-subunit of bovine brain platelet-activating factor acetylhydrolase isoform I. The biochemical analyses showed that the C-terminal half consisting of amino acids 228-418 exhibited platelet-activating factor acetylhydrolase activity. The enzyme properties and substrate specificity were similar to that of bovine brain alpha1-subunit. Although its physiological function is still unclear, it has been proposed that the alpha1-subunit-like domain of E. coli may be involved in the traversal of the blood-brain barrier. 相似文献
5.
Rachel F. Haft Michael R. Wessels Mary Fisk Mebane Neil Conaty & Craig E. Rubens 《Molecular microbiology》1996,19(3):555-563
Group B Streptococcus (GBS) is the foremost cause of neonatal sepsis and meningitis in the United States. A major virulence factor for GBS is its capsular polysaccharide, a high molecular weight polymer of branched oligosaccharide subunits. N -acetylneuraminic acid (Neu5Ac or sialic acid), at the end of the polysaccharide side chains, is critical to the virulence function of the capsular polysaccharide. Neu5Ac must be activated by CMP-Neu5Ac synthetase before it is incorporated into the polymer. We showed previously that a transposon mutant of a serotype III GBS strain which had no detectable capsular Neu5Ac was deficient in CMP-Neu5Ac-synthetase activity (Wessels et al ., 1992). In this paper, we report the identification and characterization of cpsF , a gene interrupted by transposon insertion in the previously described Neu5Ac-deficient mutant. The predicted amino acid sequence of the cpsF gene product shares 57% similarity and 37% identity with CMP-Neu5Ac synthetase encoded by the Escherichia coli K1 gene, neuA . The enzymatic function of the protein encoded by cpsF was established by cloning the gene in E. coli under the control of the T7 polymerase/promoter. Lysates of E. coli in which the cpsF gene product was expressed, catalysed the condensation of CTP with Neu5Ac to form CMP-Neu5Ac. In addition, when a CMP-Neu5Ac synthetase-deficient mutant of E. coli K1 was transformed with cpsF , K1 antigen expression was restored. We conclude that cpsF encodes CMP-Neu5Ac synthetase in type III GBS, and that the GBS enzyme can function in the capsule-synthesis of a heterologous bacterial species. 相似文献
6.
7.
8.
9.
A mutation (tls-1) that confers a temperature-sensitive growth phenotype in Escherichia coli was shown by DNA cloning and sequencing to be an allele of aspS, the gene for aspartyl-tRNA synthetase. The mutation, which lies near minute 41 on the genetic map, was located some 2.3 kb from the 5' end of the ruvAB operon. A DNA fragment encoding the carboxy-terminus of AspRS was found to be sufficient to allow growth of a tls-1 strain at the non-permissive temperature. 相似文献
10.
The structural gene for the glutamyl-tRNA synthetase of Escherichia coli has been cloned in E. coli strain JP1449, a thermosensitive mutant altered in this enzyme. Ampicillin-resistant and tetracycline-sensitive thermoresistant colonies were selected following the transformation of JP1449 by a bank of hybrid plasmids containing fragments from a partial Sau3A digest of chromosomal DNA inserted into the BamHI site of pBR322. One of the selected clones, HS7611, has a level of glutamyl-tRNA synthetase activity more than 20 times higher than that of a wild-type strain. The overproduced enzyme has the same molecular weight and is as thermostable as that of a wild-type strain, indicating that the complete structural gene is present in the insert. These characteristics were lost by curing this clone of its plasmid with acridine orange, and were transferred with high efficiency to the mutant strain JP1449 by transformation with the purified plasmid. A physical map of the plasmid, which contains an insert of about 2.7 kb in length, is presented. 相似文献
11.
Expression of thymidylate synthetase activity in Bacillus subtilis upon integration of a cloned gene from Escherichia coli 总被引:6,自引:0,他引:6
The gene from Escherichia coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid, pER2, was effective in transforming both E. coli and Bacillus subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine-requiring strains of B. subtilis to thymine independence. Linearization of the chimeric plasmid, pER2, with restriction enzymes markedly diminished its ability to transform B. subtilis auxotrophs. The Thy+ transformants derived from the transformation of B. subtilis with pER2 DNA did not contain detectable extrachromosomal DNA as demonstrated by Southern hybridization patterns and centrifugation in CsCl gradients of DNA isolated from B. subtilis colonies transformed with the chimeric plasmid. We conclude that the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis, demonstrating that extensive homology is not required for the integration of foreign DNA. This is the first reported case of a gene from a Gram-negative bacterium functioning in a Gram-positive organism. 相似文献
12.
13.
Vann Willie F.; Tavarez Jose J.; Crowley Jane; Vimr Eric; Silver Richard P. 《Glycobiology》1997,7(5):697-701
Escherichia coli K1 produces a capsular polysaccharide of 相似文献
14.
The kil gene of the ColE1 plasmid was cloned under control of the lac promoter. Its expression under this promoter gave rise to the same pattern of bacterial cell damage and lethality as that which accompanies induction of the kil gene in the colicin operon by mitomycin C. This confirms that cell damage after induction is solely due to expression of kil and is independent of the cea or imm gene products. Escherichia coli derivatives resistant to the lethal effects of kil gene expression under either the normal or the lac promoter were isolated and found to fall into several classes, some of which were altered in sensitivity to agents that affect the bacterial envelope. 相似文献
15.
Nucleotide sequence and analysis of the purA gene encoding adenylosuccinate synthetase of Escherichia coli K12 总被引:12,自引:0,他引:12
Adenylosuccinate synthetase (EC 6.3.4.4), encoded by the purA gene of Escherichia coli K12, catalyzes the synthesis of adenylosuccinate (SAMP) from IMP, the first committed step in AMP biosynthesis. The E. coli K12 purA gene and flanking DNA was cloned by miniMu-mediated transduction, and the nucleotide sequence was determined. The mature SAMP synthetase subunit, as deduced from the DNA sequence, contains 427 amino acid residues and has a calculated Mr of 47,277. The size of the purA mRNA was determined by Northern blotting to be approximately 1.5 kilobase pairs. The 5'-end of the purA mRNA was identified by primer extension and is located 23 nucleotides upstream of the ATG translational initiation codon. Comparison of the purA control region with the guaBA control region revealed a common region of dyad symmetry which may suggest mutual elements of regulation. The purA control region did not resemble the control regions of the other known pur loci. 相似文献
16.
Characterization of CMP-N-acetylneuraminic acid synthetase of group B streptococci. 总被引:1,自引:0,他引:1 下载免费PDF全文
The capsular polysaccharide is a critical virulence factor for group B streptococci associated with human infections, yet little is known about capsule biosynthesis. We detected CMP-Neu5Ac synthetase, the enzyme which activates N-acetylneuraminic acid (Neu5Ac, or sialic acid) for transfer to the nascent capsular polysaccharide, in multiple group B streptococcus serotypes, all of which elaborate capsules containing Neu5Ac. CMP-Neu5Ac synthetase isolated from a high-producing type Ib strain was purified 87-fold. The enzyme had apparent Km values of 7.6 for Neu5Ac and 1.4 for CTP and a pH optimum of 8.3 to 9.4, required magnesium, and was stimulated by dithiothreitol. This is the first characterization of an enzyme involved in group B streptococcus capsular polysaccharide biosynthesis. 相似文献
17.
18.
The nucleotide sequence of the lacZ gene coding for beta-galactosidase (EC 3.2.1.23) in Escherichia coli has been determined. Beta-Galactosidase is predicted to consist of 1023 residues, resulting in a protein with a mol. wt. of 116 353 per subunit. The protein sequence originally determined by Fowler and Zabin was shown to be essentially correct and in an Appendix these authors comment on the discrepancies. 相似文献
19.
The ada gene of Escherichia coli K12, the regulatory gene for the adaptive response of bacteria to alkylating agents, was cloned in multicopy plasmids. O6-Methylguanine-DNA methyltransferase and 3-methyladenine-DNA glycosylase II, which are known to be inducible as part of the adaptive response, were produced in ada- cells bearing ada+ plasmids, even without treatment with alkylating agents. When such cells had been treated with methyl methanesulfonate, even higher levels of the enzyme activities were produced. Maxicell experiments revealed that the ada gene codes for a polypeptide with a molecular weight of 38 000. We constructed a hybrid plasmid carrying an ada'-lacZ' fused gene, with the proper control region for ada expression. beta-Galactosidase synthesis from the fused gene was strongly induced only when cells were treated with low doses of methylating agents, but was weakly induced with relatively high doses of ethylating agents. The induction was autogenously regulated by the ada gene product, in a positive manner. 相似文献
20.
CMP-beta-N-acetylneuraminic acid (CMP-neuNAc) is the substrate for the sialylation of glycoconjugates by sialyltransferases in microbes and higher eukaryotes. CMP-neuNAc synthetase catalyzes the formation of this substrate, CMP-neuNAc, from CTP and neuNAc. In this report we describe the purification of CMP-neuNAc synthetase from bovine anterior pituitary glands. The enzyme was purified by ion exchange, gel filtration, and affinity chromatography. The protein was homogeneous on SDS-PAGE with a molecular weight of 52 kDa, a subunit size similar to that of the E.coli K1 (48.6 kDa). The identity of the 52 kDa protein band was confirmed by native gel electrophoresis in that the position of the enzyme activity in gel slices coincided with the position of major bands in the stained gel. Photoaffinity labeling with 125I-ASA-CDP ethanolamine resulted in the modification of a 52 kDa polypeptide that was partially protected against modification by the substrate CTP. Enzyme activity in crude fractions could be adsorbed onto an immunoadsorbent prepared from antibody against the purified 52 kDa protein. Taken together these data suggest that the 52 kDa polypeptide purified by this procedure described in this report is indeed CMP-neuNAc synthetase. The active enzyme chromatographed on a gel filtration column at 158 kDa suggesting it exists in its native form as an oligomer. 相似文献