首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA glycosylases help maintain the genome by excising chemically modified bases from DNA. Escherichia coli 3-methyladenine DNA glycosylase I (TAG) specifically catalyzes the removal of the cytotoxic lesion 3-methyladenine (3mA). The molecular basis for the enzymatic recognition and removal of 3mA from DNA is currently a matter of speculation, in part owing to the lack of a structure of a 3mA-specific glycosylase bound to damaged DNA. Here, high-resolution crystal structures of Salmonella typhi TAG in the unliganded form and in a ternary product complex with abasic DNA and 3mA nucleobase are presented. Despite its structural similarity to the helix-hairpin-helix superfamily of DNA glycosylases, TAG has evolved a modified strategy for engaging damaged DNA. In contrast to other glycosylase-DNA structures, the abasic ribose is not flipped into the TAG active site. This is the first structural demonstration that conformational relaxation must occur in the DNA upon base hydrolysis. Together with mutational studies of TAG enzymatic activity, these data provide a model for the specific recognition and hydrolysis of 3mA from DNA.  相似文献   

2.
3.
3-Methyladenine (3MeA) DNA glycosylases initiate base excision repair by removing 3MeA. These glycosylases also remove a broad spectrum of spontaneous and environmentally induced base lesions in vitro. Mouse cells lacking the Aag 3MeA DNA glycosylase (also known as the Mpg, APNG or ANPG DNA glycosylase) are susceptible to 3MeA-induced S phase arrest, chromosome aberrations and apoptosis, but it is not known if Aag is solely responsible for repair of 3MeA in vivo. Here we show that in Aag–/– cells, 3MeA lesions disappear from the genome slightly faster than would be expected by spontaneous depurination alone, suggesting that there may be residual repair of 3MeA. However, repair of 3MeA is at least 10 times slower in Aag–/– cells than in Aag+/+ cells. Consequently, 24 h after exposure to [3H]MNU, 30% of the original 3MeA burden is intact in Aag–/– cells, while 3MeA is undetectable in Aag+/+ cells. Thus, Aag is the major DNA glycosylase for 3MeA repair. We also investigated the in vivo repair kinetics of another Aag substrate, 7-methylguanine. Surprisingly, 7-methylguanine is removed equally efficiently in Aag+/+ and Aag–/– cells, suggesting that another DNA glycosylase acts on lesions previously thought to be repaired by Aag.  相似文献   

4.
An enzyme that plays an important role in the repair of oxidative DNA damage is the 3'-phosphodiesterase. This activity, which repairs damaged DNA 3'-termini,can be detected using several available biochemical assays. We present a method to detect 3'-phosphodiesterase activity of renatured proteins immobilized in polyacrylamide gels. The model substrate, labeled with [alpha-32P]dCTP, contains 3'-phosphoglycolate termini produced by bleomycin-catalyzed cleavage of the self-complementary alternating copolymer poly(dGdC). The DNA substrate is incorporated into the gel matrix during standard SDS-PAGE. Active 3'-phosphodiesterase enzymes are detected visibly by the loss of radioactivity at a position corresponding to the mobility of the enzyme during SDS-PAGE. Using this procedure, two Escherichia coli 3'-phosphodiesterases, exonuclease III and endonuclease IV, are readily detected in crude cell extracts or as homogeneous purified proteins. Extracts of mutant cells lack activity at the positions of exonuclease III and endonuclease IV but retain activity in the position of a much larger protein (Mr approximately 100 kDa). The identification of this novel 100 kDa E.coli 3'-phosphodiesterase demonstrates the potential value of the activity gel method described here.  相似文献   

5.
6.
DNA glycosylases initiate base excision repair by first binding, then excising aberrant DNA bases. Saccharomyces cerevisiae encodes a 3-methyladenine (3MeA) DNA glycosylase, Mag, that recognizes 3MeA and various other DNA lesions including 1,N6-ethenoadenine (epsilon A), hypoxanthine (Hx) and abasic (AP) sites. In the present study, we explore the relative substrate specificity of Mag for these lesions and in addition, show that Mag also recognizes cisplatin cross-linked adducts, but does not catalyze their excision. Through competition binding and activity studies, we show that in the context of a random DNA sequence Mag binds epsilon A and AP-sites the most tightly, followed by the cross-linked 1,2-d(ApG) cisplatin adduct. While epsilon A binding and excision by Mag was robust in this sequence context, binding and excision of Hx was extremely poor. We further studied the recognition of epsilon A and Hx by Mag, when these lesions are present at different positions within A:T and G:C tracts. Overall, epsilon A was slightly less well excised from each position within the A:T and G:C tracts compared to excision from the random sequence, whereas Hx excision was greatly increased in these sequence contexts (by up to 7-fold) compared to the random sequence. However, given most sequence contexts, Mag had a clear preference for epsilon A relative to Hx, except in the TTXTT (X=epsilon A or Hx) sequence context from which Mag removed both lesions with almost equal efficiency. We discuss how DNA sequence context affects base excision by various 3MeA DNA glycosylases.  相似文献   

7.
M Saparbaev  K Kleibl    J Laval 《Nucleic acids research》1995,23(18):3750-3755
The human carcinogen vinyl chloride is metabolized in the liver to reactive intermediates which generate various ethenobases in DNA. It has been reported that 1,N6-ethenoadenine (epsilon A) is excised by a DNA glycosylase present in human cell extracts, whereas protein extracts from Escherichia coli and yeast were devoid of such an activity. We confirm that the human 3-methyladenine-DNA glycosylase (ANPG protein) excises epsilon A residues. This finding was extended to the rat (ADPG protein). We show, at variance with the previous report, that pure E.coli 3-methyladenine-DNA glycosylase II (AlkA protein) as well as its yeast counterpart, the MAG protein, excise epsilon A from double stranded oligodeoxynucleotides that contain a single epsilon A. Both enzymes act as DNA glycosylases. The full length and the truncated human (ANPG 70 and 40 proteins, respectively) and the rat (ADPG protein) 3-methyladenine-DNA glycosylases activities towards epsilon A are 2-3 orders of magnitude more efficient than the E.coli or yeast enzyme for the removal of epsilon A. The Km of the various proteins were measured. They are 24, 200 and 800 nM for the ANPG, MAG and AlkA proteins respectively. These three proteins efficiently cleave duplex oligonucleotides containing epsilon A positioned opposite T, G, C or epsilon A. However the MAG protein excises A opposite cytosine much faster than opposite thymine, guanine or adenine.  相似文献   

8.
Escherichia coli has two DNA glycosylases for repair of DNA damage caused by simple alkylating agents. The inducible AlkA DNA glycosylase (3-methyladenine [m3A] DNA glycosylase II) removes several different alkylated bases including m3A and 3-methylguanine (m3G) from DNA, whereas the constitutively expressed Tag enzyme (m3A DNA glycosylase I) has appeared to be specific for excision of m3A. In this communication we have reexamined the substrate specificity of Tag by using synthetic DNA rich in GC base pairs to facilitate detection of any possible methyl-G removal. In such DNA alkylated with [3H]dimethyl sulphate, we found that m3G was excised from double-stranded DNA by both glycosylases, although more efficiently by AlkA than by Tag. This was further confirmed using both N-[3H]methyl-N-nitrosourea- and [3H]dimethyl sulphate-treated native DNA, from which Tag excised m3G with an efficiency that was about 70 times lower than for AlkA. These results can explain the previous observation that high levels of Tag expression will suppress the alkylation sensitivity of alkA mutant cells, further implying that m3G is formed in quantity sufficient to represent an important cytotoxic lesion if left unrepaired in cells exposed to alkylating agents.  相似文献   

9.
In eukaryotes, manganese superoxide dismutase is a nuclear-encoded protein that scavenges superoxide radicals in the mitochondrial matrix. We have isolated two manganese superoxide dismutase genes from Nicotiana plumbaginifolia L. and fused the 5' upstream regulatory region of these genes to the beta-glucuronidase reporter gene. The two gene fusions displayed a differential tissue specificity in transgenic tobacco (Nicotiana tabacum). Promoter activity of the SodA1 gene fusion was found in the pollen, middle layer, and stomium of anthers, but was usually undetectable in vegetative organs of mature plants. The SodA2 gene fusion was expressed in the leaves, stems, roots, and flowers. SodA2 promoter activity was most prominent in the vascular bundles, stomata, axillary buds, pericycle, stomium, and pollen. Histochemical analysis of succinate dehydrogenase activity suggested that the spatial expression of the two gene fusions is generally correlated with mitochondrial respiratory activity.  相似文献   

10.
The dam gene of Escherichia coli encodes a DNA methyltransferase that methylates the N6 position of adenine in the sequence GATC. It was stably expressed from a shuttle vector in a repair- and recombination-proficient strain of Bacillus subtilis. In this strain the majority of plasmid DNA molecules was modified at dam sites whereas most chromosomal DNA remained unmethylated during exponential growth. During stationary phase the amount of unmethylated DNA increased, suggesting that methylated bases were being removed. An ultraviolet damage repair-deficient mutant (uvrB) contained highly methylated chromosomal and plasmid DNA. High levels of Dam methylation were detrimental to growth and viability of this mutant strain and some features of the SOS response were also induced. A mutant defective in the synthesis of adaptive DNA alkyltransferases and induction of the adaptive response (ada) also showed high methylation and properties similar to that of the dam gene expressing uvrB strain. When protein extracts from B. subtilis expressing the Dam methyltransferase or treated with N-methyl-N'-nitro-N-nitroso-guanidine were incubated with [3H]-labelled Dam methylated DNA, the methyl label was bound to two proteins of 14 and 9 kD. Some free N6-methyladenine was also detected in the supernatant of the incubation mixture. We propose that N6-methyladenine residues are excised by proteins involved in both excision (uvrB) and the adaptive response (ada) DNA repair pathways in B. subtilis.  相似文献   

11.
The removal of 3-methyladenine and 7-methylguanine from nuclear DNA was determined following exposure of Chlamydomonas reinhardi to methyl methanesulfonate (MMS). The amount of 3-methyladenine in DNA was determined using an extract from Micrococcus luteus that has a 3-methyladenine-DNA glycosylase. The amount of 7-methylguanine was estimated by heating the DNA for 30 min at 70° followed by alkaline hydrolysis of the resulting apurinic sites. The molecular weight of the DNA was determined using alkaline sucrose gradients. The 3-methyladenine is removed with a half-life of 2–3 h whereas the 7-methylaguanine is removed with a half-life of 10–12 h. The rate of removal of the 7-methylguanine is more than an order of magnitude faster than the estimated non-enzymatic hydrolysis rate indicating the probability of enzymatic repair. Addition of cycloheximide immediately after MMS treatment inhibits the removal of 3-methyladenine and 7-methylguanine from DNA. If cycloheximide is added 1.5 h after treatment with MMS, there is much less inhibition of the removal of 3-methyladenine. These results are interpreted to mean that MMS induces the synthesis of 1 or more proteins that are required for the repair of 3-methyladenine from Chlamydomonas DNA.  相似文献   

12.
The human 3-methyladenine DNA glycosylase (AAG) is a repair enzyme that removes a number of damaged bases from DNA, including adducts formed by some chemotherapeutic agents. Cisplatin is one of the most widely used anticancer drugs. Its success in killing tumor cells results from its ability to form DNA adducts and the cellular processes triggered by the presence of those adducts in DNA. Variations in tumor response to cisplatin may result from altered expression of cellular proteins that recognize cisplatin adducts. The present study focuses on the interaction between the cisplatin intrastrand cross-links and human AAG. Using site-specifically modified oligonucleotides containing each of the cisplatin intrastrand cross-links, we found that AAG readily recognized cisplatin adducts. The apparent dissociation constants for the 1, 2-d(GpG), the 1,2-d(ApG), and the 1,3-d(GpTpG) oligonucleotides were 115 nM, 71 nM, and 144 nM, respectively. For comparison, the apparent dissociation constant for an oligonucleotide containing a single 1,N(6)-ethenoadenine (epsilonA), which is repaired efficiently by AAG, was 26 nM. Despite the affinity of AAG for cisplatin adducts, AAG was not able to release any of these adducts from DNA. Furthermore, it was demonstrated that the presence of cisplatin adducts in the reactions inhibited the excision of epsilonA by AAG. These data suggest a previously unexplored dimension to the toxicological response of cells to cisplatin. We suggest that cisplatin adducts could titrate AAG away from its natural substrates, resulting in higher mutagenesis and/or cell death because of the persistence of AAG substrates in DNA.  相似文献   

13.
Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.  相似文献   

14.
  相似文献   

15.
N(1)-methyladenine (m(1)A) and N(3)-methylcytosine (m(3)C) are major toxic and mutagenic lesions induced by alkylation in single-stranded DNA. In bacteria and mammals, m(1)A and m(3)C were recently shown to be repaired by AlkB-mediated oxidative demethylation, a direct DNA damage reversal mechanism. No AlkB gene homologues have been identified in Archaea. We report that m(1)A and m(3)C are repaired by the AfAlkA base excision repair glycosylase of Archaeoglobus fulgidus, suggesting a different repair mechanism for these lesions in the third domain of life. In addition, AfAlkA was found to effect a robust excision of 1,N(6)-ethenoadenine. We present a high-resolution crystal structure of AfAlkA, which, together with the characterization of several site-directed mutants, forms a molecular rationalization for the newly discovered base excision activity.  相似文献   

16.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

17.
Summary The presence of polydisperse small circular DNAs in wheat cells was first confirmed by the mica-pressadsorption (MPA) method for electron microscopy. To identify their location in the cell, chloroplast and mitochondrial fractions were examined separately by the same method; small circular DNAs were scarcely found in the former but abundantly in the latter fraction, indicating their origin from mitochondria. The size varied greatly, ranging from 0.1 to 2.0 m in contour length. To verify the present finding, the same mitochondrial fraction was examined by the conventional cytochrome-spreading method by which the presence of the same size-class of circular DNAs was confirmed.To know the relationship between the small circular DNAs and cytoplasmic differentiation observed among Tritium (wheat) and Aegilops species, protoplasts isolated from seven alloplasmic lines of common wheat with different cytoplasms were examined by the MPA method. Similar polydisperse small circular DNAs, ranging from 0.1 to 2.5 m in contour length Dere found in all lines, and no clear size differences were noticed among the DNA populations from the cytoplasms of eight Triticum and Aegilops species.  相似文献   

18.
J Chen  L Samson 《Nucleic acids research》1991,19(23):6427-6432
We previously showed that the expression of the Saccharomyces cerevisiae MAG 3-methyladenine (3MeA) DNA glycosylase gene, like that of the E. coli alkA 3MeA DNA glycosylase gene, is induced by alkylating agents. Here we show that the MAG induction mechanism differs from that of alkA, at least in part, because MAG mRNA levels are not only induced by alkylating agents but also by UV light and the UV-mimetic agent 4-nitroquinoline-1-oxide. Unlike some other yeast DNA-damage-inducible genes, MAG expression is not induced by heat shock. The S. cerevisiae MGT1 O6-methylguanine DNA methyltransferase is not involved in regulating MAG gene expression since MAG is efficiently induced in a methyltransferase deficient strain; similarly, MAG glycosylase deficient strains and four other methylmethane sulfonate sensitive strains were normal for alkylation-induced MAG gene expression. However, de novo protein synthesis is required to elevate MAG mRNA levels because MAG induction was abolished in the presence of cycloheximide. MAG mRNA levels were equally well induced in cycling and G1-arrested cells, suggesting that MAG induction is not simply due to a redistribution of cells into a part of the cell cycle which happens to express MAG at high levels, and that the inhibition of DNA synthesis does not act as the inducing signal.  相似文献   

19.
Low dietary folate is associated with increased risk of colorectal cancer. In earlier work, we showed that folate deficiency induced intestinal tumors in BALB/c but not C57Bl/6 mice through increased dUTP incorporation into DNA with consequent DNA damage. To determine whether strain differences between one-carbon metabolism and DNA repair pathways could contribute to increased tumorigenesis in BALB/c mice, we measured amino acids and folate in the normal intestinal tissue of both strains fed a control diet or a folate-deficient diet. We also determined the expression of critical folate-metabolizing enzymes and several DNA repair enzymes. BALB/c mice had lower intestinal serine (major cellular one-carbon donor), methionine and total folate than C57Bl/6 mice under both dietary conditions. BALB/c mice had higher messenger RNA and protein levels of three folate-interconverting enzymes: trifunctional methyleneTHF (5,10-methylenetetrahydrofolate) dehydrogenase–methenylTHF cyclohydrolase–formylTHF (10-formyltetrahydrofolate) synthetase 1, bifunctional methyleneTHF dehydrogenase–methenylTHF cyclohydrolase and methylenetetrahydrofolate reductase. This pattern of expression could limit the availability of methyleneTHF for conversion of dUMP to dTMP. BALB/c mice also had higher levels of uracil DNA glycosylase 2 protein without an increase in the rate-limiting DNA polymerase β enzyme, compared with C57Bl/6 mice. We conclude that BALB/c mice may be more prone to DNA damage through decreased amounts of one-carbon donors and the diversion of methyleneTHF away from the conversion of dUMP to dTMP. In addition, incomplete excision repair of uracil in DNA could lead to accumulation of toxic repair intermediates and promotion of tumorigenesis in this tumor-susceptible strain.  相似文献   

20.
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号