首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improving productivity of maize (Zea mays L.) and water use efficiency is of great significance for agriculture in Ethiopia. In this study, the effects of ridge‐furrow with film mulch cultivation were tested on maize yields in Melkassa, Ethiopia. Three field experiments (drip irrigation, furrow irrigation and rainfed) were conducted each with randomised complete block design with three replicates. The drip irrigation experiment was conducted in the dry season and constituted three film mulch methods (non‐mulch, transparent film mulch and black film mulch) with three irrigation levels (357, 435 and 515 mm). The furrow irrigation experiment was also conducted in the dry season and constituted two film mulches (non‐mulch and transparent film mulch) with three irrigation levels (484, 674 and 865 mm). The rainfed experiment was conducted in the rainy season and constituted three mulches (non‐mulch, transparent film mulch and black film mulch) with two farming methods (ridge‐furrow farming and flat farming). In the drip irrigation experiment, the highest maize yields (5.9 ± 0.6 t ha?1) and irrigation water use efficiency (9.6 ± 1 kg ha?1 mm?1) were recorded in the treatment using black film mulch with high irrigation, with increases of 68% and 68.4% compared to using non‐mulch treatment at that irrigation level. In the furrow irrigation experiment, maize yields and irrigation water use efficiency reached 7 (± 0.8) t ha?1 and 9.1 (± 1.9) kg ha?1 mm?1 in the treatment using transparent film mulch with medium irrigation (674 mm), with increases of 46% and 46.8% compared to that with non‐mulch treatment. In the rainfed experiment, the film mulch rather than farming method had positive effects on the maize yields and rainwater use efficiency. The average maize yield reached 8.5 (± 0.7) t ha?1 in the film mulch treatments, with an increase of 39% than using the non‐mulch treatment. Compared with that of non‐mulch treatment, the net income in the film mulch treatments increased by 94% in the furrow experiment and 31% in the rainfed experiment. Our results indicate that the ridge‐furrow with film mulch system can be recommended for water‐saving irrigation with low cost in dry seasons, and film mulch with flat farming can be recommended in rainy seasons for maize production in Ethiopia. This study provides strong evidence that maize productivity can be effectively improved in Ethiopia and other similar areas of the world using this simple and cost‐effective technology.  相似文献   

2.
The objectives of this field experiment were to study the growth characteristics and yield potential of rice plants under non‐flooded irrigation in arid area. Non‐flooded treatments included drip irrigation with plastic mulching treatments (DIs), furrow irrigation with plastic mulching treatment (FIM) and furrow irrigation with non‐mulching treatment (FIN). Conventional flooded cultivation (F) was check treatment (CK). The four drip irrigation treatments differed in the amount of water applied before and after panicle initiation. Root length density, leaf dry weight, shoot dry weight and root activity were generally higher in the non‐flood‐irrigated treatments (especially the drip‐irrigated treatments) than in the flood‐irrigated treatment at mid‐tillering. However, the growth and development of rice plants were limited after jointing in the non‐flooded irrigation treatments. Increasing the root/shoot ratio and root length density in the 20–40 cm depth and decreasing specific root length at 0–20 cm soil layer were important mechanisms for helping the rice plants to adapt to the non‐flooded environmental stresses. Finally, the grain yield in the non‐flooded irrigation treatments was lower than that in the F treatment. These low yields were mainly attributed to the low root length density at 0–20 cm depth and root activity. Generally speaking, the restricted degrees in the DIs were smaller than that in the FIM and FIN treatments. Among the DIs, both the highest grain yield (8223–8900 kg ha?1) and the highest water use efficiency (WUE) (0.63) were observed when the soil water content was kept at ?30 kPa before panicle initiation and at ?15 kPa after panicle initiation (referred to as the DI2 treatment). The yield in the DI2 treatment was not significantly different than that in the flood‐irrigated treatment. However, WUE was 2.5 times higher in the DI2 treatment than in the F treatment. These results suggest that drip irrigation technology can be considered as a better water‐saving cultivation of rice plants in arid region.  相似文献   

3.
Aims: This study aimed to assess the contamination risk of Escherichia coli in commercial lettuce grown under three different irrigation systems (overhead sprinkler, subsurface drip and surface furrow). Methods and Results: Three replicated field trials were conducted. In an initial trial, we consistently observed higher mesophilic bacteria counts under sprinkler irrigation but visual quality was found to be dependent on the water potential of leaves at harvest. Further, in the other two trials, E. coli K‐12 strains LMM1010 and ATCC 25253, was injected into the water stream of the different irrigation systems to determine survival in the field. Results showed that product samples were positive for E. coli up to 7 days when using sprinkler irrigation, whereas only one product sample was found positive for E. coli when using other irrigation methods. Survival of bacteria in soil persisted longer in furrow‐irrigated areas, ranging from an estimated 17 days in winter months to 5 days during the warmer summer periods. This finding combined with results from a parallel 3‐year survey of canal waters indicate that while highest risk of finding E. coli in irrigation water is in warmer months, the survival in soil is lower during the same time period. Conclusions: Our results in a study set under common commercial conditions confirmed the enhanced risk of E. coli contamination when using sprinkle irrigation. Furthermore, E. coli persistence in furrow‐irrigated soil validates the importance of an early irrigation termination for both sprinkler and furrow methods. Significance and Impact of the Study: Stringent monitoring and in‐field food safety controls should be emphasized during the last few days before harvest.  相似文献   

4.
滴灌与沟灌栽培杨树人工林土壤水分动态与生产力   总被引:2,自引:0,他引:2  
在北京大兴区永定河故道沙地上对9年生杨树人工林进行滴灌和沟灌栽培,于根系主要分布土层(20、40、60、80 cm)布设土壤水分传感器并利用智能采集器实时监测土壤含水率,分析不同灌溉措施下的土壤水分动态变化及杨树人工林生产力。结果表明: 单次有效的滴灌和沟灌后,沿树行形成的湿润体垂直深度分别为72和143 cm,湿润体横切面的面积分别为0.41和2.71 m2;灌溉量分别为79.20和776.47 m3·hm-2,后者为前者的9.8倍,灌溉后杨树吸收根主要分布土层(0~40 cm)的土壤含水率下降到水分轻度亏缺临界值(土壤含水率为田间持水量的70%)的历时均为11 d左右。2019年4—10月,沟灌5、7、9月3次总灌溉量为2329.41 m3·hm-2;滴灌18次,总灌溉量为1425.60 m3·hm-2。沟灌下杨树人工林土壤水分中度亏缺(土壤含水率低于田间持水量的60%)累计天数达109 d,而滴灌下的杨树人工林土壤水分始终未发生中度亏缺。滴灌下杨树人工林蓄积年生长量为38.92 m3·hm-2,是沟灌(25.43 m3·hm-2)的1.5倍,表明不同灌溉措施下杨树人工林生产力差异显著。  相似文献   

5.
不同灌溉方式下3种土壤微生物活性测定方法比较   总被引:4,自引:0,他引:4  
李文  叶旭红  韩冰  张西超  邹洪涛  张玉龙 《生态学报》2017,37(12):4084-4090
探究不同灌溉方式下土壤微生物活性,对维持土壤稳定和提高水资源利用效率具有重要意义。以沈阳农业大学长期定位灌溉试验基地为平台,采用土壤酶活性、土壤呼吸和微量热法,研究节水灌溉组覆膜滴灌、渗灌及对照组沟灌下的土壤微生物活性并比较3种微生物活性测定方法。结果表明:不同灌溉方式下土壤脲酶、转化酶、脱氢酶活性无显著差异,土壤呼吸在3个主要生长季也没有明显变化规律;而微量热法得到的热功率时间曲线呈现了典型的微生物生长特征趋势,覆膜滴灌的生长速率较大,且与沟灌的总热量、最大热功率相差不大。因此,从可持续农业观点出发,覆膜滴灌是保证土壤微生物活性较高的一种节水灌溉方式;微量热法也为传统方法下不易检测的微生物活性提供了新思路。  相似文献   

6.
Tomato rooting patterns were evaluated in a 2-year field trial where surface drip irrigation (R0) was compared with subsurface drip irrigation at 20 cm (RI) and 40 cm (RII) depths. Pot-transplanted plants of two processing tomato, `Brigade' (C1) and `H3044' (C2), were used. The behaviour of the root system in response to different irrigation treatments was evaluated through minirhizotrons installed between two plants, in proximity of the plant row. Root length intensity (L a), length of root per unit of minirhizotron surface area (cm cm–2) was measured at blooming stage and at harvest. For all sampling dates the depth of the drip irrigation tube, the cultivar and the interaction between treatments did not significantly influence L a. However differences between irrigation treatments were observed as root distribution along the soil profile and a large concentration of roots at the depth of the irrigation tubes was found. For both surface and subsurface drip irrigation and for both cultivars most of the root system was concentrated in the top 40 cm of the soil profile, where root length density ranged between 0.5 and 1.5 cm cm–3. Commercial yields (t ha–1) were 87.6 and 114.2 (R0), 107.5 and 128.1 (RI), 105.0 and 124.8 (RII), for 1997 and 1998, respectively. Differences between the 2 years may be attributed to different climatic conditions. In the second year, although no significant differences were found among treatments, slightly higher values were observed with irrigation tubes at 20 cm depth. Fruit quality was not significantly affected by treatments or by the interaction between irrigation tube depth and cultivar.  相似文献   

7.
塑料大棚渗灌灌水下限对番茄生长和产量的影响   总被引:18,自引:2,他引:18  
利用土壤水分张力计监测土壤水分吸力的变化,以灌水时30cm土层的土壤水分吸力表示渗灌灌水下限,研究灌水下限为10、16、25、40和63kPa时对塑料大棚番茄生长和产量的影响.结果表明,番茄株高、生物量分别随灌水下限的增大而减小.番茄的产量和水分利用率与灌水下限间的关系曲线为抛物线,而茎粗/株高比与灌水下限间的关系曲线为三次多项式曲线.灌水下限不同,番茄的根/冠比(R/S)动态不同,番茄根系与株冠的生长状况不同.灌水下限在25~33kPa时,番茄植株生长健壮,根冠比例协调,产量大,水分利用率高.此指标作为渗灌灌水下限,灌水时土壤水分的含量比常规灌水低,灌水次数少,有利于提高保护地番茄栽培的水分利用率和劳动生产率.  相似文献   

8.
Effects of varying intensities of sub-lethal heating were ascertained in improving the efficiency of Brassica amendments and summer irrigation on survival of Macrophomina phaseolina, a dry root rot pathogen. Sub-lethal heating (45–55°C) of M. phaseolina infested dry soil reduced the viable propagules by only 12.8% in a period of 90 days. One summer irrigation without sub-lethal heating caused 33.9% reduction in M. phaseolinapropagules, which improved to 43.3% when it was combined with 60 days of sub-lethal heating. Addition of the Brassicaamendments to irrigated soil resulted in significant reduction (60.4–71.6%) in counts of M. phaseolinabut this reduction improved (89.4–96.1%) when sub-lethal heating was combined with amendments. Mustard oil-cake (0.18% w/w) was found to be the most effective with reduction but a 94% inoculum reduction by mustard pod straw (0.36% w/w) was also achieved at 0–30 cm soil depth under similar conditions. Moderate heat level could not exert detectable weakening effect on M. phaseolinapropagules. These results suggest a practical cultural control of soil-borne pathogens by combining sub-lethal heating, Brassica amendments with one summer irrigation.  相似文献   

9.
在土柱栽培条件下研究膜下滴灌土壤深层水对棉花根系生长的影响及与植株地上部生长的关系,设置土壤(60~120 cm)有深层水和无深层水2个处理,每处理设2个生育期间灌溉处理,分别为田间持水量70%和55%.结果表明:棉花总根质量密度、40~120 cm土层根长密度、根系活力等与地上部干质量间均具有显著的相关关系.生育期间耕层70%田间持水量条件下,土壤有深层水处理的总根质量密度与无深层水处理无明显差异,但40~120 cm土层的根长密度增加,根系活力增强,提高了土壤贮备水消耗量,增加了地上部干质量,最终获得较高的经济产量及水分利用效率.土壤有深层水条件下,生育期间耕层55%田间持水量处理的根冠比较大,40~120 cm土层根长密度和80~120 cm土层根系活力相对较高,土壤贮备水消耗量大幅提高,但仍无法弥补生育期间水分亏缺对根系及地上部生物量造成的负面影响,导致经济产量显著低于70%田间持水量处理.综上,充足的土壤深层水配合生育期间耕层65%~75%田间持水量,可促进棉花根系向下生长,有利于实现膜下滴灌棉花节水高产高效生产.  相似文献   

10.
张明智  牛文全  许健  李元 《生态学杂志》2016,27(6):1925-1934
为探明微灌与播前深松耕作对夏玉米根际土壤酶活性和产量的影响,以大田夏玉米为研究对象,设计微灌灌溉方式(地表滴灌、地下滴灌和微润灌)、灌水量(分别控制土壤含水量下限为田间持水率的50%、65%和80%)和深松深度(20、40、60 cm)3因素、3水平正交田间试验.结果表明: 夏玉米全生育期内,土壤过氧化氢酶和脲酶活性均呈先增加后减小趋势,磷酸酶活性则呈先减小后增加趋势.地下滴灌0~80 cm生育期平均土壤含水率比地表滴灌和微润灌高6.3%和1.8%,且显著提高土壤脲酶活性、夏玉米根系体积和产量;随着灌水量的增加,土壤磷酸酶活性呈先减小后增加趋势,脲酶活性和产量均呈先增加后减小趋势,生育期平均土壤含水率与根系体积均呈增加趋势;深松40 cm比20 cm的产量和根系体积增加量大于深松60 cm比40 cm的增加量,深松40 cm土壤酶活性较高.从提高水资源、氮肥利用率及作物产量角度考虑,该地区夏玉米种植的最优组合应为地下滴灌、灌水下限为田间持水率的65%与播前深松40 cm.  相似文献   

11.
研究不同滴灌方式对葡萄根系分布的影响,是制定葡萄肥水管理和越冬防寒措施的依据.本研究以传统沟灌为对照,采用覆草滴灌、膜下滴灌、双管滴灌、单管滴灌等不同节水灌溉方式,研究了荒漠灌区不同灌溉方式下酿酒葡萄‘赤霞珠’的根系组成与分布特点.结果表明: 在干旱荒漠区‘赤霞珠’葡萄根系的垂直分布范围在0~70 cm,水平分布范围在0~120 cm.采用双管滴灌的根系数量最大,单个剖面根系数量达138.3条,但根系的垂直分布范围较对照(沟灌)缩小了20 cm;覆草滴灌的根系数量较对照显著提高,根系水平分布范围较对照扩大了9.1%;膜下滴灌的根系数量和水平分布范围与对照差异不显著,但根系垂直分布范围较对照减少了20 cm;单管滴灌显著提高了根系数量,但根系垂直分布和水平分布范围与对照差异不显著.在该生态区酿造葡萄最理想的节水滴灌方式是覆草滴灌.  相似文献   

12.
The effects of soil solarisation, residue incorporation, summer irrigation and biocontrol agents singly or in combination on survival of Macrophomina phaseolina and Fusarium oxysporum f.sp. cumini were ascertained in the 2000 and 2001 summer seasons. In amended plots, temperature increased by 2.5°C over non‐amended plots (42–51°C) at various soil depths. Combining amendments and soil solarisation elevated the soil temperatures by 0.5–5°C and 2.5–13.0°C compared to non‐amended solarised and non‐solarised plots, respectively. These treatment combinations significantly reduced M. phaseolina and Fusarium propagules compared to control. Of these, combining mustard pod residues with soil solarisation almost eliminated viable propagules of both the pathogens at 0–30 cm soil depth. However, a combination of mustard pod residue and oil‐cake (2.5 + 0.5 ton ha?1) with only one summer irrigation also caused pronounced reduction in pathogenic propagules, which was equal to that recorded in non‐amended solarised plots. The effect of surviving propagules of M. phaseolina and Fusarium on incidence of dry root rot on clusterbean and wilt on cumin was studied in subsequent rainy and winter seasons, respectively. Significant reductions in both diseases were recorded in residue and biocontrol amended plots with or without polyethylene mulching compared to non‐amended control. The lowest plant mortality in both the crops was recorded in mustard residue amended solarised plots in a two year field experiment. However, the disease indices in the plots having a combination of mustard residues and oil‐cake amendment with one summer irrigation was equal to that achieved in the treatment having polyethylene mulching. These results suggest that in hot arid regions use of Brassica residues can be a practical and feasible substitute for polyethylene mulching in managing soil‐borne diseases.  相似文献   

13.
Proper management of water and fertilizer placement in irrigated corn (Zea mays L.) has the potential to reduce nitrate leaching into the groundwater. Potential management practices tested in a two year field experiment included row or furrow fertilizer placement combined with every or alternate furrow irrigation. To understand how fertilizer availability to plants could be affected by these management practices, root growth and distribution in a Ulm clay loam soil were examined. Spring rains were greater than normal in both years providing adequate moisture for early root growth in both irrigated and non-irrigated furrows. As the non-irrigated furrow began to dry, root biomass increased as much as 126% compared with the irrigated furrow. The greatest increase was at lower depths, however, where moisture was still plentiful. When early season moisture was available, roots proliferated throughout the soil profile and quickly became available to take up fertilizer N in both irrigated and non-irrigated furrows. Root growth responded positively to fertilizer placement in the furrow in 1996 but not in 1995. Excessive N leaching in 1995 may have limited the response to fertilizer N.  相似文献   

14.
Macrophomina phaseolina (Tassi) Goid. causes seedling blight, charcoal rot, leaf blight, stem and pod rot on over 500 plant species in different parts of the world. The pathogen survives as sclerotia formed in host tissues which are released into the soil as tissue decay. Low soil moisture is considered the more important predisposing factor for M. phaseolina-induced diseases than high temperature. The intensity of the disease on a crop is related to the population of viable sclerotia in the soil and abiotic factors. The influence of various management strategies in reducing the number of viable propagules of the pathogen in the soil has been studied in order to minimize the impact of the disease. Any management approach that reduces inoculum density in the soil may reduce disease incidence on the host. However, to reduce inoculum density, quantitative determination of viable propagules from soil is necessary in order to understand the effect of management strategies on the population dynamics of this pathogen. Considerable work has been done on organic amendments, changing crop sequences with tolerant crops, fumigants, herbicides and tillage in managing M. phaseolina populations in the soil and the resulting disease. Solarization has been used in controlling M. phaseolina in different countries where this pathogen is causing disease on economically valuable crops. However, this method of soil disinfestation was effective in eliminating viable populations at the top soil layer although by combining other approaches its effectiveness was improved at lower soil depth. Use of biological control agents with or without organic amendments or after solarization has emerged to be a practical management approach in the control of M. phaseolina. In this paper, an attempt has been made to review those research findings where the influence of various management approaches on survival of M. phaseolina mainly sclerotia have been investigated.  相似文献   

15.
土壤水热状况是影响甜瓜生长及坐果的重要因素.本文以膜下滴灌为供水方式,在开花坐果期设计了重度亏缺(55%田间持水量,T1)、中度亏缺(65%田间持水量,T2)、轻度亏缺(75%田间持水量,T3)和不亏缺(85%田间持水量,CK)4种水分控制下限处理,研究了不同水分控制下限对温室滴灌甜瓜耕层温度的影响,在此基础上探讨了耕层(0~20 cm)不同水热比值对甜瓜生长发育及坐果情况的影响.结果表明;甜瓜在开花坐果期间,耕层的平均地温为T1>T2>T3>CK,地温与土壤含水率呈反比.晴天、阴雨天及灌水后的地温日最大变幅均出现在膜内地表,最小变幅出现在膜外地表以下20 cm处;地温极值与土壤深度密切相关,地表极值与地下10和20 cm的极值差异显著.该阶段选择T3作为灌水标准,即水热比值为1.62 mm·℃-1时,植株的生长速率最快,坐果历时最短且坐果率最高.综合考虑温室膜下滴灌甜瓜在开花坐果期的土壤水分与地温的关系,认为T3处理可使耕层土壤水热比值(水热比值为1.62 mm·℃-1)达到最佳状态,更有利于甜瓜的生长发育和坐果.  相似文献   

16.
In order to evaluate the combined effects of drip irrigation and petroleum extraction activities on As contamination and distribution in local soils, a total of 141 soil and 30 groundwater (GW) samples from field sites drip-irrigated with GW in Kuitun, Xinjiang, China were collected and analyzed arsenic (As) levels. Soil As levels ranged from 6.74 to 23.10 mg·kg?1. For the field irrigated with As-loaded GW for 0.5-10 years, As levels in soils increased by 0.50-9.10 mg·kg?1 as compared with the control soils. As levels in all top-layer (0-10 cm in thickness) irrigated soils A (0-5 cm away from dripper) were found to be higher than those in top-layer irrigated soils B (5-10 cm away from dripper). It was estimated that As in agricultural soils increased by approximately 11~3789 g·yr?1·ha?1 under drip irrigating, most of which in top-layer soils covering the plant roots. The widely used drip irrigation system in Kuitun enhanced the ecological and human-health threats of As via affecting its spread into soils. Furthermore, the petroleum exploiting activity further promoted As levels in local soils. Within a distance of 10~1000 m away from petroleum exploiting sites, the soil As level decreases significantly with the distance.  相似文献   

17.
为探究耕作覆盖对土壤水热及旱作马铃薯产量的影响,连续2年在宁南旱区不同耕作深度结合覆盖模式下开展了研究工作。结果表明: 耕作深度、覆盖材料对马铃薯播种期0~100 cm土层土壤贮水量有极显著影响,而二者交互作用无显著影响;2019年土壤贮水量以深松30 cm覆盖地膜处理最高,2020年以深松40 cm覆盖秸秆处理较高,分别较翻耕15 cm不覆盖处理(对照)显著提高16.9%和33.4%;耕作深度、覆盖材料可显著影响马铃薯关键生育期土壤贮水量;同一耕作深度下土壤贮水量以秸秆、地膜覆盖处理效果较好,同一覆盖材料下以深松30~40 cm处理最佳。覆盖材料、耕作深度与覆盖材料二者交互作用对播种-现蕾期0~25 cm土层土壤有效积温影响显著;同一耕作深度下覆盖地膜处理土壤有效积温平均较不覆盖处理显著增加9.3%,而覆盖秸秆处理较不覆盖处理显著降低18.7%;2019和2020年各处理全生育期土壤有效积温分别以深松30 cm和深松40 cm覆盖地膜处理最高。2019年马铃薯总产量和经济效益以深松30 cm覆盖秸秆处理较高,分别较对照显著提高84.6%和107.9%;2020年以深松40 cm覆盖秸秆处理最佳,分别较对照显著提高81.7%和105.7%。耕作深度、覆盖材料对作物水热利用效率均有显著影响,水分利用效率以深松30~40 cm覆盖秸秆处理较高,而积温利用效率不同耕作深度结合秸秆覆盖各处理均较翻对照显著提高。相关分析表明,块茎形成期的土壤水分和有效积温对马铃薯总产量的形成至关重要,而全生育期土壤水分对总产量的影响高于土壤有效积温。可见,深松30~40 cm覆盖秸秆处理可改善土壤水热状况,实现马铃薯增产增收和水热资源的高效利用,在宁南半干旱区马铃薯生产中有一定的应用推广价值。  相似文献   

18.
隔沟交替灌溉条件下玉米根系形态性状及结构分布   总被引:9,自引:0,他引:9  
为揭示根系对土壤环境的适应机制,研究了隔沟交替灌溉条件下玉米根系形态性状及结构分布。以垄位和坡位的玉米根系为研究对象,利用Minirhizotrons法研究了根系(活/死根)的长度、直径、体积、表面积、根尖数和径级变化及其与土壤水分、土温和水分利用效率(WUE)的相关关系。结果表明,对于活根,在坡位非灌水区域复水后根系平均直径减小,而根系日均生长速率、单位面积土壤根系体积密度、根尖数和表面积均增大,并随灌水区域土壤水分的消退逐渐减小;对于死根,在坡位非灌水区域复水后根系日均死亡速率、根系体积密度、根尖数和表面积变化均减小,其中根系死亡速率和死根直径随土壤水分的消退逐渐降低,而死根体积密度、根尖数和表面积分布随土壤水分降低呈增大趋势;在垄位,根系形态分布趋势与坡位一致,除根系直径与与坡位比较接近外,其他根系形态值均小于坡位。将根系分成4个径级区间分析根系的形态特征,结果表明在根系长度和体积密度分布中以2.5-4.5 mm径级的根系所占比例最大,在根尖数和根系表面积分布中以0.0-2.5 mm径级的根系为主。通过显著性相关分析,死根直径、体积密度、活根表面积等根系形态与土壤含水率、土壤温度和WUE间均存在显著或极显著的正相关关系,部分根系形态指标(如根系的生长速率、活根体积密度)只与坡位土壤含水量、土壤温度具有明显的相关性,表明隔沟交替灌溉对坡位根系形态的调控作用比垄位显著。  相似文献   

19.
二级水灌溉对土壤及马铃薯块茎中大肠菌群数量的影响   总被引:1,自引:0,他引:1  
采用多管发酵法检测二级水灌溉对马铃薯种植土壤中大肠菌群数量,结果表明:充分灌溉后的土壤中大肠菌群的数量均高于分根交替灌的土壤;地下滴灌的土壤中大肠菌群数量高于沟灌土壤的大肠菌群数量;二级水经加氯消毒后,土壤中大肠菌群数量明显下降。同样采用多管发酵法检测马铃薯块茎,结果发现:采用加氯消毒后的二级水灌溉的小区E和F中生长的马铃薯,其块茎组织中大肠菌群数量低于其他小区,采用地下滴灌灌溉的小区I和J所种植出的马铃薯块茎中大肠菌群的数量高于采用沟灌灌溉的小区K和L。结果表明:马铃薯块茎中大肠菌群的数量与其生境中大肠菌群的数量有密切关系。  相似文献   

20.
为探明膜下滴灌土壤湿润范围对棉花根区水热环境及棉花根系耗水的影响,设置滴头流量1.69(W169)、3.46(W346)和6.33 L·h-1(W633)3个水平,观测分析了棉花生育期土壤基质势、土壤温度及棉花根系生长和耗水分布状况.结果表明: 膜下滴灌土壤温度主要受光照影响;不同类型土壤湿润区之间的土壤温度差异不明显,不同土壤湿润区的膜下土壤温度对棉花根系耗水也没有明显影响.但是随着土壤湿润区由窄深型向宽浅型过渡,棉花根区土壤基质吸力在水平方向上分布更趋于均匀,而棉花根系耗水强度主要受土壤基质吸力分布的影响.宽浅型土壤湿润区(W633)的棉花膜下内、边行根系耗水强度差值平均为0.67 mm·d-1,有利于内、边行棉株生长整齐;窄深型土壤湿润区(W169)的内、边行根系耗水强度差值平均为0.88 mm·d-1,不利于内、边行棉株均匀生长.可见,膜下滴灌技术设计中,土壤湿润区不应小于覆膜宽度,应使膜下土壤整体湿润.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号