首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Energy cost of load carriage   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
《Lab animal》2012,41(3):61
  相似文献   

6.
Energy cost of "hard work"   总被引:1,自引:0,他引:1  
  相似文献   

7.
Energy cost of front-crawl swimming in women   总被引:1,自引:0,他引:1  
The purpose of this study was to examine the relationship between the energy cost of swimming per unit distance (Cs) at different velocities (v) and performance level, body size and swimming technique in women. A total of 58 females swimmers were studied. Three performance levels (A, B, C) were determined, ranging from the slower (A) to the faster (B, C). At level C and at 1.1 m.s-1, Cs,1.1 was reduced by 7% when directly compared to level B. The Cs,1.1 was reduced by 10% when calculated per unit of height (h) and by 37% when calculated per unit of h and hydrostatic lift (HL). For the whole group of swimmers, the equation regression was Cs,1.1 = 0.27 h-2.38 HL - 7.5 (r = 0.53, P less than 0.01). To evaluate the specific influence of arm length two groups of long- and short-armed swimmers were selected among swimmers of similar h and performance. The Cs was significantly higher (P less than 0.05) by 12%, SD 2.2%, for short-armed than for long-armed swimmers. To evaluate the influence of different types of swimming technique, two other groups of similar performance and anthropometric characteristics were selected. The Cs was significantly higher (P less than 0.05) by 12%, SD 4.5% for swimmers using for preference their legs rather than their arms. The Cs of the sprinters was 15.7%, SD 2% higher than that of the long-distance swimmers. For all groups, Cs increased with v on average by 8% to 11% every 0.1 m.s-1. These findings showed that Cs variations of these women were close to those previously demonstrated for men. The Cs depends on performance level, body size, buoyancy, swimming technique and v.  相似文献   

8.
Energy costs and energy sources in karate (wado style) were studied in eight male practitioners (age 23.8 years, mass. 72.3 kg, maximal oxygen consumption (VO2max) 36.8 ml · min–1 · kg–1) performing six katas (formal, organized movement sequences) of increasing duration (from approximately. 10 s to approximately 80 s). Oxygen consumption (VO2) was determined during pre-exercise rest, the exercise period and the first 270 s of recovery in five consecutive expired gas collections. A blood sample for lactate (la) analysis was taken 5 min after the end of exercise. The overall amount of O2 consumed during the exercise and in the following recovery increased linearly with the duration of exercise (t) from approximately 1.51 (for t equal to 10.5 s (SD 1.6)) to approximately 5.81, for t equal to 81.5 s (SD 1.0). The energy release from la production (VO21a ) calculated assuming that an increase of 1 mmol · l–1 la corresponded to a VO2 of 3 mlO2 · kg–1 was negligible for t equal to or less than 20 s and increased to 17.3 ml · kg–1 (la = 5.8 mmol · l–1 above resting values) for t equal approximately to 80 s. The overall energy requirement (VO2eq) as given by the sum of VO2 and VO2la was described by VO2eq = 0.87 + 0.071 · t (n = 64; r 2 = 0.91), where VO2eq is in litres and t in seconds. This equation shows that the metabolic power (VO2eq · t –1) for this karate style is very high: from approximately 9.51 · min–1 for t equal to 10 s to approximately 4.91 · min–1 for t equal to 80 s, i.e. from 3.5 to 1.8 times the subjects' VO2max. The fraction of VO2eq derived from the amount of O2 consumed during the exercise increased from 11% for t equal to 10 s to 41 % for t equal to 80 s whereas VO21a was negligible far t equal to or less than 20 s and increased to 13 % o for t equal to 80 s. The remaining fraction (from 90% for t equal to 10 s to 46% for t equal to 80 s), corresponding to the amount of O2 consumed in the recovery after exercise, is derived from anaerobic alactic sources, i.e. from net splitting of high energy phosphates during the exercise.  相似文献   

9.
The purpose of this study was to compare energy expenditure of resistance and aerobic exercise matched for total time and relative intensity. Ten trained men (24.3 +/- 3.8 years) performed 30 minutes of intermittent free-weight squatting at 70% of 1 repetition maximum and continuous cycling at 70% of Vo(2)max, in a crossover design. Vo(2), kilocalories (kcal), work, respiratory exchange ratio (RER), V(E), heart rate (HR), and rating of perceived exertion (RPE) data were recorded. Cycling resulted in greater total Vo(2) (87 +/- 3 vs. 53 +/- 3 L, mean +/- SEM), kcal expenditure (441 +/- 17 vs. 269 +/- 13), and work (335 +/- 11 vs. 128 +/- 11 kJ) than squatting did. The mean RER was greater during squatting (1.03 +/- 0.01 vs. 0.94 +/- 0.01), and the V(E) values were greater during cycling (82 +/- 3 vs. 70 +/- 3 L.min(-1)). The HR response was nearly identical between exercise modes (160 +/- 5 vs. 160 +/- 4 bpm), whereas the RPE was greater during squatting (16.96 +/- 0.41 vs. 14.88 +/- 0.42). These data suggest that although lower than similarly matched aerobic exercise, resistance exercise resulted in an energy cost that would meet the recommendations for kcal expenditure as suggested by the American College of Sports Medicine, if performed 4-5 days per week. These findings should be considered by coaches and trainers working with individuals mutually interested in muscular development and weight management, because programs of structured resistance exercise may assist with both.  相似文献   

10.
11.
12.
13.
14.
Lipid changes in the infective third-stage larvae of Ancylostoma tubaeforme following measured periods of activity have been quantified. ‘Excessive’ activity (more than 16 activity régimes, or 8 h in neostigmine bromide) resulted in a significant (> 10%) depletion of the lipid reserves, especially from the anterior region of the intestine.  相似文献   

15.
16.
17.
Oxygen uptake was measured on four male subjects during sculling gondolas at constant speeds from approximately 1 to approximately 3 m.s-1. The number of scullers on board in the different trials was one, two or four. Tractional water resistance (drag, D, N) was also measured in the same range of speeds. Energy cost of locomotion per unit of distance (C, J.m-1), as calculated from the ratio of O2 uptake above resting to, increased with v according to a power function (C = 155.2.v1.67; r = 0.88). Also D could be described as a power function of the speed: D = 12.3.v2.21; r = 0.94). The overall efficiency of motion, as obtained from the ratio of D to C, increased with speed from 9.2% at 1.41 m.s-1 to 14.5% at 3.08 m.s-1. It is concluded that, in spite of this relatively low efficiency of motion, the gondola is a very economic means. Indeed, at low speeds (approximately 1 m.s-1), the absolute amount of energy for propelling a gondola is the same as that for waking on the level at the same speed for a subject of 70 kg body mass.  相似文献   

18.
Energy cost of galactoside transport to Escherichia coli.   总被引:2,自引:2,他引:0       下载免费PDF全文
Energy reserves of Escherichia coli can be depleted by our previously reported procedure to a level such that even the "downhill" transport of o-nitrophenyl-beta-D-galactopyranoside (ONPG) is completely dependent upon the exogenous energy supply. The ONPG concentration is high externally to the cells and is low intracellular because of the action of cytoplasmic beta-galactosidase. In the present work, depleted cell suspensions have been infused at low, steady rates with glucose and other energy sources while measurements of transport were being made. Comparing the rate of ONPG transport with the rate of introduction of glucose under conditions where the chosen glucose infusion rate limits transport, we find that 89 molecules of ONPG are transported per molecule of fully oxidized glucose. This transport yield is constant over a 6.5-fold range in rate of glucose addition. This constancy over a range of infusion rates implies that transport is the major cellular function under these special conditions. The yield value if 89 is in the agreement with the predicitions of 76 from Mitchell's chemiosmotic theory and constitutes an independent proff of its validity, since all the other proposed mechanisms of engery coupling predict much smaller yields. The lag from the start of glucose infusion into the reaction cuvette, to the extrapolated time at which a steady rate of transport and concomitant hydrolysis are achieved, is short (approximately 1 min). Similarly, the time after the infusion is stopped until the rate of transport returns to the background rate is also short. The latter implies that the energy metabolism is directed almost entirely to transport and/or other ongoing cellular processes and not to repair or renewal of an energy-independent, facilitated diffusion system.  相似文献   

19.
The purpose of this study was (a) to assess the intensity and energy cost of a single-set resistance training (RT) protocol as recommended by the recent American College of Sports Medicine (ACSM) guidelines for older adults and (b) to compare obtained values to those recently reported as eliciting health benefits via endurance-based physical activity (PA). Five males and 5 females (73.1 +/- 5.5 years) performed 1 set of 15 repetitions of 8 RT exercises while connected to a portable metabolic unit (CosMed K4b2). The RT intensity (metabolic equivalents [METs]) was 3.3 +/- 0.7 (males) and 3.0 +/- 0.6 (females). Energy cost (kcal) was 84.2 +/- 14.6 (males) and 69.7 +/- 17.4 (females). We conclude that a single-set 8-exercise RT protocol may be a feasible alternative for achieving moderate intensity (3-6 METs) for older adults but that additional sets and/or repetitions appear to be necessary to accumulate moderate amounts (150-200 kcal) of PA.  相似文献   

20.
With the continuous development of hardware and software, Graphics Processor Units (GPUs) have been used in the general-purpose computation field. They have emerged as a computational accelerator that dramatically reduces the application execution time with CPUs. To achieve high computing performance, a GPU typically includes hundreds of computing units. The high density of computing resource on a chip brings in high power consumption. Therefore power consumption has become one of the most important problems for the development of GPUs. This paper analyzes the energy consumption of parallel algorithms executed in GPUs and provides a method to evaluate the energy scalability for parallel algorithms. Then the parallel prefix sum is analyzed to illustrate the method for the energy conservation, and the energy scalability is experimentally evaluated using Sparse Matrix-Vector Multiply (SpMV). The results show that the optimal number of blocks, memory choice and task scheduling are the important keys to balance the performance and the energy consumption of GPUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号