首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The problem of discovering novel motifs of binding sites is important to the understanding of gene regulatory networks. Motifs are generally represented by matrices (position weight matrix (PWM) or position specific scoring matrix (PSSM) or strings. However, these representations cannot model biological binding sites well because they fail to capture nucleotide interdependence. It has been pointed out by many researchers that the nucleotides of the DNA binding site cannot be treated independently, e.g. the binding sites of zinc finger in proteins. In this paper, a new representation called Scored Position Specific Pattern (SPSP), which is a generalization of the matrix and string representations, is introduced which takes into consideration the dependent occurrences of neighboring nucleotides. Even though the problem of discovering the optimal motif in SPSP representation is proved to be NP-hard, we introduce a heuristic algorithm called SPSP-Finder, which can effectively find optimal motifs in most simulated cases and some real cases for which existing popular motif finding software, such as Weeder, MEME and AlignACE, fail.  相似文献   

13.
14.
Autoinhibition of p53 binding to MDMX requires two short-linear motifs (SLiMs) containing adjacent tryptophan (WW) and tryptophan-phenylalanine (WF) residues. NMR spectroscopy was used to show the WW and WF motifs directly compete for the p53 binding site on MDMX and circular dichroism spectroscopy was used to show the WW motif becomes helical when it is bound to the p53 binding domain (p53BD) of MDMX. Binding studies using isothermal titration calorimetry showed the WW motif is a stronger inhibitor of p53 binding than the WF motif when they are both tethered to p53BD by the natural disordered linker. We also investigated how the WW and WF motifs interact with the DNA binding domain (DBD) of p53. Both motifs bind independently to similar sites on DBD that overlap the DNA binding site. Taken together our work defines a model for complex formation between MDMX and p53 where a pair of disordered SLiMs bind overlapping sites on both proteins.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号