共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Subcellular distribution of the soluble lytic transglycosylase in Escherichia coli. 总被引:1,自引:6,他引:1 下载免费PDF全文
The localization of the major autolytic enzyme, the soluble lytic transglycosylase, in the different cell compartments of Escherichia coli was investigated by immunoelectron microscopy. Ultrathin sections were labeled with a specific antiserum against purified soluble lytic transglycosylase, and the antibody-enzyme complexes were visualized with colloidal protein A-gold. A preferential localization of the lytic transglycosylase in the envelope was observed, with only 20 to 30% of the enzyme left in the cytoplasm. Most of the enzyme associated with the cell wall was tightly bound to the murein sacculus. Sacculi prepared by boiling of cells in 4% sodium dodecyl sulfate could be immunolabeled with the specific antiserum, indicating a surprisingly strong interaction of the lytic transglycosylase with murein. The enzyme-substrate complex could be reconstituted in vitro by incubating pronase-treated, protein-free murein sacculi with purified lytic transglycosylase at 0 degrees C. Titration of sacculi with increasing amounts of enzyme indicated a limiting number of binding sites for about 1,000 molecules of enzyme per sacculus. Ruptured murein sacculi obtained after penicillin treatment revealed that the enzyme is exclusively bound to the outer surface of the sacculus. This finding is discussed in the light of recent evidence suggesting that the murein of E. coli might be a structure of more than one layer expanding by inside-to-outside growth of patches of murein. 相似文献
3.
Periplasmic proteases of Escherichia coli 总被引:3,自引:0,他引:3
R A Cook 《Critical reviews in biotechnology》1988,8(3):159-175
In the course of examining the turnover of enzymes and proteins subject to catabolite inhibition and/or catabolite repression in Escherichia coli, we have observed at least three novel calcium- or manganese-activated proteolytic activities restricted to the periplasmic space. The occurrence and level of these proteolytic activities vary with the stage of cell growth and carbon source. Each of these proteases are neutral metalloendoproteases capable of degrading test substrates such as casein, insulin, globin, and protamine and appear to be unique when compared with the known periplasmic proteases in E. coli. One of these proteases (designated protease VII) has been purified to homogeneity and characterized in regard to subunit structure, sensitivity to protease inhibitors and metal ions, and substrate specificity. Immunological and genetic approaches are being employed to determine if these novel proteases arise from a common gene product. The physiological role of these proteases remains to be established. 相似文献
4.
Protein aggregation is involved in several human diseases, and presumed to be an important process in protein quality control. In bacteria, aggregation of proteins occurs during stress conditions, such as heat shock. We studied the protein aggregates of Escherichia coli during heat shock. Our results demonstrate that the concentration and diversity of proteins in the aggregates depend on the availability of proteases. Aggregates obtained from mutants in the Lon (La) protease contain three times more protein than wild-type aggregates and show the broadest protein diversity. The results support the assumption that protein aggregates are formed from partially unfolded proteins that were not refolded by chaperones or degraded by proteases. 相似文献
5.
Two serine proteases in extracts of Escherichia coli grown to stationary phase were purified to homogeneity using affinity chromatography on gramicidin S-Sepharose 4B. One enzyme was closely related to, if not identical with, the 'trypsin-like' protease II of E. coli. The other was capable of cleaving the subtilisin chromogenic substrate N-carbobenzoxy-L-alanyl-L-alanyl-L-leucine-p-nitroanilide and resembled the intracellular serine proteases of Bacillus spp. The amino acid composition of this E. coli protease was similar to that of the Bacillus licheniformis enzyme. These data indicate a relationship between proteolytic enzymes of evolutionary distant Gram-negative Enterobacteriaceae and Gram-positive spore-forming Bacillus. 相似文献
6.
Rikizo Aono 《Applied microbiology and biotechnology》1989,31(4):397-400
Summary The extracellular production of alkalophilic Bacillus penicillinase by Escherichia coli HB101 carrying pEAP31 was dependent on the cultivation temperature. Extracellular production occurred only above 26°C. The penicillinase produced by the organism grown at lower temperatures accumulated in the periplasm of the cells. At high temperature, the penicillinase accumulated transiently in the periplasm and then was released gradually from the cells. The penicillinase that accumulated in the periplasm of the organism grown at low temperature could also be released by shifting to a high temperature. 相似文献
7.
A M Lazdunski 《FEMS microbiology reviews》1989,5(3):265-276
A number of peptidases and proteases have been identified in Escherichia coli. Although their specific physiological roles are often not known, some of them have been shown to be involved in: the maturation of nascent polypeptide chains; the maturation of protein precursors; the signal peptide processing of exported proteins; the degradation of abnormal proteins; the use of small peptides as nutrients; the degradation of colicins; viral morphogenesis; the inactivation of some regulatory proteins for which a limited lifetime is a physiological necessity. Some of these enzymes act in concert to carry out specific functions. At present, twelve peptidases and seventeen proteases have been characterized. The specificity for only a few of them is known. The possible roles and the properties of these enzymes are discussed in this review. 相似文献
8.
9.
The length growth rate of an exponentially growing population of Escherichia coli B/r was calculated from the population length and birth length distributions. Cell elongation took place at a constant rate that doubled at a certain length. This change in rate was responsible for a sudden drop in the frequency of classes of cells longer than that length. Asymmetry in cell partition was able to generate cells both shorter and longer than the expected twofold range, but did not greatly modify the length distribution in between. 相似文献
10.
Global role for ClpP-containing proteases in stationary-phase adaptation of Escherichia coli 下载免费PDF全文
To elucidate the involvement of proteolysis in the regulation of stationary-phase adaptation, the clpA, clpX, and clpP protease mutants of Escherichia coli were subjected to proteome analysis during growth and during carbon starvation. For most of the growth-phase-regulated proteins detected on our gels, the clpA, clpX, or clpP mutant failed to mount the growth-phase regulation found in the wild type. For example, in the clpP and clpA mutant cultures, the Dps protein, the WrbA protein, and the periplasmic lysine-arginine-ornithine binding protein ArgT did not display the induction typical for late-stationary-phase wild-type cells. On the other hand, in the protease mutants, a number of proteins accumulated to a higher degree than in the wild type, especially in late stationary phase. The proteins affected in this manner include the LeuA, TrxB, GdhA, GlnA, and MetK proteins and alkyl hydroperoxide reductase (AhpC). These proteins may be directly degraded by ClpAP or ClpXP, respectively, or their expression could be modulated by a protease-dependent mechanism. From our data we conclude that the levels of most major growth-phase-regulated proteins in E. coli are at some point controlled by the activity of at least one of the ClpP, ClpA, and ClpX proteins. Cultures of the strains lacking functional ClpP or ClpX also displayed a more rapid loss of viability during extended stationary phase than the wild type. Therefore, regulation by proteolysis seems to be more important, especially in resting cells, than previously suspected. 相似文献
11.
Proteolytic degradation of recombinant proteins is an industry-wide challenge in host organisms such as Escherichia coli. These proteases have been linked to stresses, such as the stringent and heat-shock responses. This study reports the dramatic up-regulation of protease activity in an industrial recombinant E. coli fermentation upon induction. The objective of this project was to detect and characterize up-regulated proteases due to recombinant AXOKINE overexpression upon IPTG induction. AXOKINE is a 22-kDa protein currently in clinical trials as a therapeutic for obesity associated with diabetes. AXOKINE was expressed in both the soluble and inclusion body fractions in E. coli. Sodium dodecyl sulfate gelatin-polyacrylamide gel electrophoresis (SDS-GPAGE) was used to analyze the up-regulated protease activity. Western blot analysis showed degraded AXOKINE in both the soluble and insoluble fractions. Protease inhibitors were used to characterize the proteases. The proteases were ethylenediaminetetraacetic acid (EDTA) sensitive. The protease activity increased in the presence of phenyl-methyl sulfonyl-fluoride (PMSF), a serine protease inhibitor. The incubation buffer composition was varied with respect to Mg2+ and ATP, and the protease activity was ATP independent and Mg2+ dependent. A two-dimensional electrophoresis technique was used to estimate the pI of the proteases to be between 2.9 and 4.0. 相似文献
12.
A statistical analysis of physical map data for eight restriction enzymes covering nearly the entire genome of E. coli is presented. The methods of analysis are based on a top-down modeling approach which requires no knowledge of the statistical properties of the base sequence. For most enzymes, the distribution of mapped sites is found to be fairly homogeneous. Some heterogeneity in the distribution of sites is observed for the enzymes Pstl and HindIII. In addition, BamHI sites are found to be more evenly dispersed than we would expect for random placement and we speculate on a possible mechanism. A consistent departure from a uniform distribution, observed for each of the eight enzymes, is found to be due to a lack of closely spaced sites. We conclude from our analysis that this departure can be accounted for by deficiencies in the physical map data rather than non-random placement of actual restriction sites. Estimates of the numbers of sites missing from the map are given, based both on the map data itself and on the site frequencies in a sample of sequenced E. coli DNA. We conclude that 5 to 15% of the mapped sites represent multiple sites in the DNA sequence. 相似文献
13.
I D Algranati G Echandi S H Goldemberg S Cunningham-Rundles W K Maas 《Journal of bacteriology》1975,124(3):1122-1127
The distribution of ribosomal particles has been studied in a polyamine-deficient mutant of Escherichia coli by sucrose gradient centrifugation analysis. Lysates from starved cells contained less 70S monomers and 30S subunits but more 50S particles than those prepared from bacteria supplemented with putrescine. The addition of the polyamine to putrescine-depleted cells induced a rapid change of the ribosomal profile. A similar effect could be obtained in vitro by equilibrium dialysis against a polyamine-containing solution. The ribosomal pattern obtained from starved bacteria was specific for polyamine deficiency. We conclude that the changes in ribosomal profiles upon restoration of putrescine levels in previously starved cells denote a shift of the equilibrium between 30S-50S couples and ribosomal subunits. 相似文献
14.
15.
Macromolecule synthesis in Escherichia coli BB under various growth conditions. 总被引:3,自引:2,他引:1 下载免费PDF全文
The kinetic behavior of the macromolecule synthesis of Escherichia coli during balanced growth in various media at different temperatures as investigated. The results indicate that macromolecule contents per cell can be expressed as exponential functions of the specific growth rate at a given temperature. It was shown that the content per cell at the zero growth rate was constant in each macromolecule component, irrespective of the growth temperature. The rate of ribonucleic acid (RNA) synthesis per unit weight of deoxyribonucleic acid and that of protein synthesis per unit weight of RNA were taken as efficiencies of RNA and protein synthesis, respectively; both of them were found to be dependent on the growth rate and temperature. The efficiency of RNA synthesis was found to be very high at a high growth rate, whereas that of protein synthesis was found to decrease above certain growth rate. At the same growth rate, an increase in the growth temperature resulted in a decrease in the efficiency of RNA synthesis but an increase in that of protein synthesis. 相似文献
16.
Summary The comparative chromatographic investigations into the ribosomal proteins of various strains of E. coli have demonstrated that most of the strains including three strains of E. coli subsp. communior had ribosomes with the same protein compositions (C-type). The ribosomes from strain B are different from the C-type ribosomes in having the specific 30-4 (B) component in place of 30-4 (B-type), while those from strains K 12 may be distinguished from the type-C ribosomes by the presence of the specific 30-7 (K) component in place of 30-7 (K-type) or, in addition to 30-7 (K), the presence of 30-9 (W3637) in place of 30-9 (K-3637 type). Two strains, IAM 1132 and IAM 1182, have R-type ribosomes, in which at least six 50s proteins and four 30s protein components are distinct from the corresponding protein components in the C-type ribosomes. 相似文献
17.
Two high-molecular-mass proteases have been detected in E.coli K12 and isolated from the periplasmic fraction released by osmotic shock. The two proteases, designated Protease peri7 and Protease peri8, have similar molecular masses (greater than 2000 kDa) and degrade alpha- and beta-casein, but not insulin B chain. Protease peri7 is a metalloprotease activated 3-6 fold by ATP, dATP and GTP but inhibited by AMP. Nucleotide hydrolysis occurs during protein breakdown. Protease peri8, in contrast, is a serine protease unaffected by nucleotides or metal chelators. The two proteases appear by electron microscopy to be ring-shaped particles of approximately 125 A degrees in diameter. These proteases appear to be very similar to the multi-protease complexes (Proteasomes) detected in a variety of eukaryotic cells. 相似文献
18.
19.
Formation and degradation of SsrA-tagged proteins enable ribosome recycling and elimination of defective products of incomplete translation. We produced an antibody against the SsrA peptide and used it to measure the amounts of SsrA-tagged proteins in Escherichia coli cells without interfering with tagging or altering the context of the tag added at the ends of nascent polypeptides. SsrA-tagged proteins were present in very small amounts unless a component of the ClpXP protease was missing. From the levels of tagged proteins in cells in which degradation is essentially blocked, we calculate that > or =1 in 200 translation products receives an SsrA tag. ClpXP is responsible for > or =90% of the degradation of SsrA-tagged proteins. The degradation rate in wild type cells is > or =1.4 min(-1) and decreases to approximately 0.10 min(-1) in a clpX mutant. The rate of degradation by ClpXP is decreased approximately 3-fold in mutants lacking the adaptor SspB, whereas degradation by ClpAP is increased 3-5-fold. However, ClpAP degrades SsrA-tagged proteins slowly even in the absence of SspB, possibly because of interference from ClpA-specific substrates. Lon protease degrades SsrA-tagged proteins at a rate of approximately 0.05 min(-1) in the presence or absence of SspB. We conclude that ClpXP, together with SspB, is uniquely adapted for degradation of SsrA-tagged proteins and is responsible for the major part of their degradation in vivo. 相似文献
20.
Electrophoresis of crude cell extracts on PAGE gels in the presence of SDS copolymerized with a nonspecific protease substrate has been used to detect, characterize, and quantify intracellular proteases in recombinant Escherichia coli. After electrophoresis, the gels are incubated, SDS is removed, and protease activity is revealed by clear zones on the stained gel due to proteolysis of the nonspecific protease substrate (gelatin or casein). The method differentiates proteases based on activity and molecular weight. 相似文献