首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The orphan nuclear receptor Nurr1 is expressed in the developing and adult central nervous system. Previous studies have shown that Nurr1 is essential for the generation of midbrain dopamine neurons. Furthermore, Nurr1 is critical for respiratory functions associated with the brain stem. Very few Nurr1 regulated genes have been identified and it remains unclear how Nurr1 influences the function and development of neurons. To identify novel Nurr1 target genes we have searched for regulated genes in the dopaminergic MN9D cell line. These experiments identified Neuropilin-1 (Nrp1), a receptor protein involved in axon guidance and angiogenesis, as a novel Nurr1 target gene. Nrp1 expression was rapidly up-regulated by Nurr1 in MN9D cells and in situ hybridization analysis showed that Nrp1 was coexpressed with Nurr1 in the brain stem dorsal motor nucleus. Importantly, Nrp1 expression was down-regulated in this area in Nurr1 null mice. Moreover, two functional Nurr1 binding sites were identified in the Nrp1 promoter and Nurr1 was found to be recruited to these sites in MN9D cells, further supporting that Nrp1 is a direct downstream target of Nurr1. Taken together, our findings suggest that Nurr1 might influence the processes of axon guidance and/or angiogenesis via the regulation of Nrp1 expression.  相似文献   

3.
β-chemokines are secreted factors that regulate diverse functions in the adult brain, such as neuro-immune responses and neurotransmission, but their function in the developing brain is largely unknown. We recently found that the orphan nuclear receptor, Nurr1, up regulates CCL2 and CCL7 in neural stem cells, suggesting a possible function of β-chemokines in midbrain development. Here we report that two β-chemokines, CCL2 and CCL7, and two of their receptors, CCR1 and CCR2, are expressed and developmentally regulated in the ventral midbrain (VM). Moreover, we found that the expression of CCL7 was down regulated in the Nurr1 knockout mice, linking CCL7 to dopamine (DA) neuron development. When the function of CCL2 and CCL7 was examined, we found that they selectively enhanced the differentiation of Nurr1+ precursors into DA neurons, but not their survival or progenitor proliferation in primary precursor cultures. Moreover, both CCL2 and CCL7 promoted neuritogenesis in midbrain DA neuron cultures. Thus, our results show for the first time a function of β-chemokines in the developing brain and identify β-chemokines as novel class of pro-differentiation factors for midbrain DA neurons. These data also suggest that β-chemokines may become useful tools to enhance the differentiation of DA cell preparations for cell replacement therapy and drug discovery in Parkinson's disease (PD).  相似文献   

4.
5.
6.
7.
8.
9.
10.
In vitro expanded CNS precursors could provide a renewable source of dopamine (DA) neurons for cell therapy in Parkinson's disease. Functional DA neurons have been derived previously from early midbrain precursors. Here we demonstrate the ability of Nurr1, a nuclear orphan receptor essential for midbrain DA neuron development in vivo, to induce dopaminergic differentiation in naïve CNS precursors in vitro. Independent of gestational age or brain region of origin, Nurr1‐induced precursors expressed dopaminergic markers and exhibited depolarization‐evoked DA release in vitro. However, these cells were less mature and secreted lower levels of DA than those derived from mesencephalic precursors. Transplantation of Nurr1‐induced DA neuron precursors resulted in limited survival and in vivo differentiation. No behavioral improvement in apomorphine‐induced rotation scores was observed. These results demonstrate that Nurr1 induces dopaminergic features in naïve CNS precursors in vitro. However, additional factors will be required to achieve in vivo function and to unravel the full potential of neural precursors for cell therapy in Parkinson's disease.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The orphan nuclear receptor Nurr1 is primarily expressed in the central nervous system. It has been shown that Nurr1 is necessary for terminal differentiation of dopaminergic (DA) neurons in ventral midbrain. The receptor, however, is also expressed in other organs including bone, even though the role of Nurr1 is not yet understood. Therefore, we investigated the role of Nurr1 in osteoblast differentiation in MC3T3-E1 cells and calvarial osteoblasts derived from Nurr1 null newborn pups. Our results revealed that reduced Nurr1 expression, using Nurr1 siRNA in MC3T3-E1 cells, affected the expression of osteoblast differentiation marker genes, osteocalcin (OCN) and collagen type I alpha 1 (COL1A1), as measured by quantitative real-time PCR. The activity of alkaline phosphatase (ALP), another osteoblast differentiation marker gene, was also decreased in Nurr1 siRNA-treated MC3T3-E1 cells. In addition, Nurr1 overexpression increased OCN and COL1A1 expression. Furthermore, consistent with these results, during osteoblast differentiation, the expression of osteoblast marker genes was decreased in primary cultured mouse calvarial osteoblasts derived from Nurr1 null mice. Collectively, our results suggest that Nurr1 is important for osteoblast differentiation.  相似文献   

19.
20.
Park CH  Kang JS  Yoon EH  Shim JW  Suh-Kim H  Lee SH 《FEBS letters》2008,582(5):537-542
Roles of Nurr1 and neurogenin 2 (Ngn2) have been shown in midbrain dopamine (DA) neuron development. We present here rat and mouse species-dependent differences of Nurr1 and Ngn2 actions in DA neuron differentiation. Nurr1 exogene expression caused an efficient generation of tyrosine hydroxylase (TH)-positive DA cells from rat neural precursor cells (NPCs). Nurr1-induced TH+ cell yields were low and highly variable depending on the origins of NPCs in mouse cultures. Coexpression of Ngn2 repressed Nurr1-induced generation of TH+ cells in rat cultures. In clear contrast, a robust enhancement in Nurr1-induced DA cell yields was observed in mouse NPCs by Ngn2. These findings imply that DA neurons may develop differently in the midbrains of these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号