共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Glucokinase and hexokinase activities have been determined in the livers of newborn rats and attempts made to influence in vivo the development of the glucokinase. 2. Glucokinase first appears in rat liver about 16 days after birth and adult activities are reached 10–12 days later. Evidence is presented which indicates that this represents synthesis of new protein. Hexokinase activities remain constant throughout the period of glucokinase development. 3. Both exogenous glucose and insulin are necessary for the natural development of glucokinase, for this is retarded in starved and alloxan-diabetic neonatal rats. 4. The absence of glucokinase during the first 2 weeks of extrauterine life in the rat is not due to lack of insulin. 5. Attempts to advance the time at which glucokinase first appears by infusions of glucose, insulin and chlorpropamide alone and in various combinations have resulted in marginal effects only. 6. When rats are starved for 3 days during the period of glucokinase development and then re-fed, glucokinase is more rapidly synthesized, indicating that the potential ability to synthesize glucokinase continues to develop throughout the period of starvation. 7. Some possible reasons for the comparatively late development of glucokinase are discussed. 相似文献
2.
Thyroid hormones and the precocious induction of hepatic glucokinase in the neonatal rat 总被引:1,自引:0,他引:1
M J Wakelam C Aragon C Gimenez M B Allen D G Walker 《European journal of biochemistry》1979,100(2):467-475
1. Oral intubation of glucose is more effective than intraperitoneal injection in inducing the premature appearance of hepatic glucokinase in suckling rats. 2. The inducing effect of glucose is enhanced by treatment of the animals 12 h or more earlier with 1 microgram triiodothyronine/g body weight. 3. Low but significant activities of glucokinase appear at the normal time of development in hypothyroid neonatal rats. Intubation of glucose into 13-day-old and 24-day-old hypothyroid results in the rapid appearance of glucokinase similar to that in normal animals treated likewise. 4. The enhancing effect of thyroid hormones on glucokinase induction by glucose does not necessarily mean that the normal postnatal increase in plasma thyroid hormones is essential for the normal appearance of glucokinase activity at the time of weaning. Other possible explanations are discussed. 相似文献
3.
We have developed a rapid, reliable procedure for the purification of rat hepatic glucokinase. The purification utilizes DEAE-cellulose, two affinity chromatography steps, and high-performance liquid chromatography. Glucokinase with a specific activity of 240 units/mg, a 42 K-fold purification, and a yield of 60% is obtained. The enzyme appears as a homogeneous band, with over 99% purity as assessed by polyacrylamide gel electrophoresis. The purification procedure can be completed in 5 days. 相似文献
4.
Biotin-mediated synthesis of hepatic glucokinase in the rat 总被引:2,自引:0,他引:2
5.
1. It was shown that the development of liver glucokinase in the rat coincided with a peak in the levels of circulating thyroid hormone at about the 16th postnatal day. 2. Administration of thyroid inhibitors blocked the development of the enzyme and administration of thyroid hormone restored activity to normal levels. 3. Glucokinase could be induced prematurely as early as the 2nd postnatal day by the administration of thyroid hormone followed by daily injection of glucose (10 mg/g body weight). 4. Glucocorticoids and corticotropin failed to induce glucokinase activity prematurely. 5. The postnatal increase in circulating thyroid hormone levels together with increased intake of carbohydrate at weaning may be the normal physiological stimulus for induction of this enzyme. 相似文献
6.
Expression of rat hepatic glucokinase in Escherichia coli 总被引:1,自引:0,他引:1
C T Chien A Tauler A J Lange K Chan R L Printz M R el-Maghrabi D K Granner S J Pilkis 《Biochemical and biophysical research communications》1989,165(2):817-825
Rat liver glucokinase was expressed in Escherichia coli by using an expression system based on bacteriophage T7 RNA polymerase. The expressed protein starts with the predicted initiator methionine residue and ends at the appropriate carboxyl terminal residue. It was partially purified by ammonium sulfate precipitation and gel filtration and had kinetic and physical properties similar to the purified rat liver enzyme. The efficient expression of this low abundance hepatic protein in bacteria provides a system for in vitro analysis of mutations of the enzyme. 相似文献
7.
Regulation of hepatic l-serine dehydratase and l-serine-pyruvate aminotransferase in the developing neonatal rat 总被引:7,自引:7,他引:0
1. The activities of l-serine dehydratase and l-serine–pyruvate aminotransferase were determined in rat liver during foetal and neonatal development. 2. l-Serine–pyruvate aminotransferase activity begins to develop in late-foetal liver, increases rapidly at birth to a peak during suckling and then decreases at weaning to the adult value. 3. l-Serine dehydratase activity is very low prenatally, but increases rapidly after birth to a transient peak. After a second transient peak around the time weaning begins, activity gradually rises to the adult value. Both of these peaks have similar isoenzyme compositions. 4. In foetal liver both l-serine dehydratase and l-serine–pyruvate aminotransferase activities are increased after injection in utero of glucagon or dibutyryl cyclic AMP. Cycloheximide or actinomycin D inhibited the prenatal induction of both enzymes and actinomycin D blocked the natural increase of l-serine dehydratase immediately after birth. Glucose or insulin administration also blocked the perinatal increase of l-serine dehydratase. 5. After the first perinatal peak of l-serine dehydratase, activity is increased by cortisol and this is inhibited by actinomycin D. After the second postnatal peak, activity is increased by amino acids or cortisol and this is insensitive to actinomycin D inhibition. Glucose administration blocks the cortisol-stimulated increase in l-serine dehydratase and also partially lowers the second postnatal peak of activity. 6. The developmental patterns of the enzymes are discussed in relation to the pathways of gluconeogenesis from l-serine. The regulation of enzyme activity by hormonal and dietary factors is discussed with reference to the changes in stimuli that occur during neonatal development and to their possible mechanisms of action. 相似文献
8.
Precocious induction of hepatic glucokinase and malic enzyme in artificially reared rat pups fed a high-carbohydrate diet 总被引:2,自引:0,他引:2
P M Haney C R Estrin A Caliendo M S Patel 《Archives of biochemistry and biophysics》1986,244(2):787-794
Glucokinase and NADP:malate dehydrogenase (malic enzyme) first appear in liver when rat pups are weaned from milk which is high in fat to lab chow which is high in carbohydrate. To examine the influence of diet during the early neonatal period, before developmental changes in the circulating concentrations of thyroid and adrenocortical hormones occur, high-carbohydrate formula (56% of calories from carbohydrate), isocaloric and isonitrogenous with rat milk, was intermittently infused via gastrostomy starting on the second day of life. Pups had no further access to their dams. Body weights attained by these pups were at least 90% of those attained by mother-fed pups, which served as controls. In artificially reared rats fed the high-carbohydrate formula, on Day 4, glucokinase and malic enzyme were 30 and 18% of adult activity, respectively; on Day 10, glucokinase and malic enzyme were 71 and 96% of adult activity, respectively. On Days 4 and 10 glucose-6-phosphate dehydrogenase was elevated four- to fivefold in pups fed the high-carbohydrate formula compared to mother-fed pups. A second isocaloric formula, with 22% of calories from carbohydrate but low in protein, resulted in intermediate levels of all three enzymes on Day 10. Pups fed the high-carbohydrate formula has plasma insulin concentrations four- to fivefold greater than mother-fed pups on both Days 4 and 10. Triiodothyronine administration (1 microgram/g body wt) on Day 1 enhanced the induction of malic enzyme but not glucokinase on Day 4 in pups fed the high-carbohydrate formula. The results demonstrate that neonatal rat liver is competent to respond to high carbohydrate intake by induction of glucokinase and malic enzyme. 相似文献
9.
Lee PC Jelinek B Struve M Bruder ED Raff H 《American journal of physiology. Regulatory, integrative and comparative physiology》2000,279(4):R1341-R1347
Increases in plasma lipids occur during hypoxia in suckling but not in weaned rats and may result from altered hepatic enzyme activity. We exposed rats to 7 days of hypoxia from birth to 7 days of age (suckling) or from 28 to 35 days of age (weaned at day 21). Hypoxia led to an increase in hepatic lipid content in the suckling rat only. Hepatic lipase was decreased to approximately 45% of control in 7-day-old rats exposed to hypoxia but not in hypoxic 35-day-old rats. Hypoxic suckling rats also had a 50% reduction in lactate dehydrogenase activity, whereas transaminase activity and CYP1A and CYP3A protein content were not different between hypoxic and normoxic groups. Additional rats were studied 7 and 14 days after recovery from hypoxic exposure from birth to 7 days of age; hepatic lipase activity had recovered to 85% by 7 days and to 100% by 14 days in the rats previously exposed to hypoxia. Administration of dexamethasone to neonatal rats to simulate the hyperglucocorticoid state found in hypoxic 7-day-old rats led to a moderate decrease ( approximately 75% of control) in hepatic lipases. Developmentally, in the normoxic state, hepatic lipases increased rapidly after birth and reached levels more than twofold that of the newborn by 7 days of age. Hypoxia delays the maturation of hepatic lipases. We suggest that the decrease in hepatic lipase activity contributes to hyperlipemia in the hypoxic newborn rats. 相似文献
10.
11.
We studied the role of glucokinase translocation between the nucleus and the cytoplasm in hepatocytes. In cultured hepatocytes, both the translocation of glucokinase from the nucleus to the cytoplasm and the rate of glucose phosphorylation were increased when cells were incubated with high concentrations of glucose. The addition of low concentrations of fructose, which is known to stimulate glucose phosphorylation, stimulated both glucokinase translocation and glucose phosphorylation. There was a good correlation between the increase in cytoplasmic glucokinase induced by fructose and that in the glucose phosphorylation rate induced by fructose. Furthermore, we observed a linear relationship between cytoplasmic glucokinase activity and rate of glucose phosphorylation over various glucose concentrations in the absence or presence of fructose. These results indicate that glucose phosphorylation in hepatocytes depended on glucokinase in the cytoplasmic compartment--that is, the increase in the rate of glucose phosphorylation was due to the increase in translocation of glucokinase out of the nucleus. Also, oral administration of glucose, fructose, or glucose plus fructose to 24-h fasted rats induced translocation of glucokinase in the liver. All of these results indicate that hepatic glucose metabolism is regulated by the translocation of glucokinase. 相似文献
12.
1. The physiological factors that prevent the precocious appearance of glucokinase activity in the 13-day-old rat that can be induced by oral glucose administration were explored. 2. Evidence is presented that the galactose component of milk sugar is inhibitory. In the absence of this inhibitory galactose, the amount of glucose necessary to effect appreciable induction is greater than that present in milk. 3. The induction is prevented both by administration of mannoheptulose, which inhibits insulin release, and by excess insulin; the amount of insulin available therefore seems to be critical. 4. The inhibition of induction by galactose does not appear to be via competition with glucose but by enhancing insulin release and thereby making this excessive. The relative amounts of glucose and insulin appear to be important in regulating glucokinase induction. 5. The precocious induction of glucokinase by glucose is inhibited by simultaneous treatment with approriate amounts of adrenaline, glucagon, dibutyryl cyclic AMP or isoprenaline but not by vasopressin or angiotensin II. 6. No single cause of glucokinase induction in neonatal rat liver can be recognized. The process is subject to regulation by many factors at a time subsequent to when competence to synthesize the enzyme has been established. 相似文献
13.
14.
15.
M J Holroyde M B Allen A C Storer A S Warsy J M Chesher I P Trayer A Cornish-Bowden D G Walker 《The Biochemical journal》1976,153(2):363-373
A new improved procedure for the purification of rat hepatic glucokinase (ATP-d-glucose 6-phosphotransferase, EC 2.7.1.2) is given. A key step is affinity chromatography on Sepharose-N-(6-aminohexanoyl)-2-amino-2-deoxy-d-glucopyranose. A homogeneous enzyme, specific activity 150 units/mg of protein, is obtained in about 40% yield. The molecular weight of the pure enzyme was determined by several procedures. In particular, sedimentation-equilibrium studies under a variety of conditions indicate a molecular weight of 48000 and no evidence for dimerization; reports in the literature of other values are discussed in the light of this evidence on the pure enzyme. The amino acid composition suggests that hepatic glucokinase is closely related to rat brain hexokinase and also the wheat "light" hexokinases. 相似文献
16.
B Rosenfeld 《Journal of lipid research》1973,14(5):557-562
Fatty acid synthetase activity was measured in the high-speed supernatant fraction of liver homogenates from rats fed a semisynthetic diet low in lipotropic factors. If choline was omitted from the diet, a significant increase of fatty acid synthetase activity was observed after two feedings of the deficient diet. Compared with controls, the increase of fatty acid synthetase activity was of a magnitude that could account for the amount of triglyceride accumulating in the hepatic floating lipid fraction. Gas-liquid chromatographic analysis of the floating lipid triglycerides showed an increased content of palmitic acid due to choline deficiency; this increase could be predicted from the increased fatty acid synthetase activity and its known characteristic yield of palmitic acid. 相似文献
17.
18.
19.
Insulin and tri-iodothyronine induce glucokinase mRNA in primary cultures of neonatal rat hepatocytes. 下载免费PDF全文
Glucokinase (EC 2.7.1.2) first appears in the liver of the rat 2 weeks after birth and increases after weaning on to a high-carbohydrate diet. We investigated the hormonal regulation of glucokinase (GK) mRNA in primary cultures of hepatocytes from 10-12-day-old suckling rats. GK mRNA was undetectable in such cells after 48 h of culture in serum-free medium devoid of hormones. Addition of insulin or tri-iodothyronine (T3) to the medium resulted in induction of GK mRNA. The effects of insulin and T3 were dose-dependent and additive. Dexamethasone alone did not induce GK mRNA, but enhanced the response to insulin and decreased the response to T3. Induction of GK mRNA by insulin was not affected when the medium glucose concentration was varied between 5 and 15 mM, nor when culture was conducted in glucose-free medium supplemented with lactate and pyruvate or galactose. The time course of initial accumulation of GK mRNA in response to insulin was characterized by a lag of 12 h and an induction plateau reached after 36 h. If hepatocytes were then withdrawn from insulin for 24 h and subsequently subjected to a secondary stimulation by insulin, GK mRNA re-accumulated with much faster kinetics and reached the fully induced level within 8 h. Both primary and secondary responses to insulin were abolished by actinomycin D. These results provide insight into the role of hormonal stimuli in the ontogenic development of hepatic glucokinase. 相似文献