首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of polyribosomes in mouse liver cells at the reduced-rate translation was studied by treatment with cycloheximide (CHI) and aurintricarboxylic (ATA) acid. An increase of polypeptide synthesis time by 1.7-2.7 times (0.5 mg CHI per 25 g of weight or 15 mg ATA per 25 g) leads to a delay of the entrance of newly formed cytoplasmic D-RNA into polyribosomes. These results are in agreement with the model of polyribosome formation from ribonucleoprotein precursors containing cytoplasmic D-RNA. On the other hand, in the presence of a CHI dose (5 mg/25 g) causing a dramatic (240-fold) increase of polypeptide synthesis time, the kinetics of entrance of newly formed D-RNA into polyribosomes does not differ from the normal one, and amount of the incorporated mRNA is even somewhat higher than under normal conditions. It is suggested that in this situation ribosomes are moving along the newly formed mRNA, and their movement is not accompanied by the synthesis of completed polypeptide chain.  相似文献   

2.
Using dissociation in 0.8 M KCl, it was established that in freshly excised Jerusalem artichoke (Helianthus tuberosus L.) tuber slices less than 8% of the ribosomes were in polysomes. The first hour of aging in water was the period of most rapid polysome accumulation; over 32% of the ribosomes carried nascent polypeptide chains at the end of this time. Thereafter polysome accumulation continued to increase, but more gradually. While synthesis of high-molecular-weight RNA (presumed mRNA) was inhibited more than 95% by -amanitin during the first hour of aging, the inhibitor had no effect on polysome formation. As determined by [3H]polyuridylic acid hybridization, unaged cells contained polyadenylated RNA with a size range of 6–30S. The amount of polyadenylated RNA did not change during the first hour of aging. In control cells in water the in-vivo rate of protein synthesis increased exponentially during the first 4 h of aging without a comparable increase in polysomes. In -amanitintreated tissues a similar increase in protein synthesis was not observed despite the presence of near control levels of polysomes. It is suggested that early polysome formation depends on stored mRNA. Inhibition of mRNA synthesis by -amanitin prevents the normal development of an enhanced rate of protein synthesis which is not directly related to numbers of ribosomes in polysomes.Abbreviations Poly(A) polyadenylic acid - Poly(A)+RNA polyadenylated RNA - Poly(U) polyuridylic acid - TCA trichloroacetic acid  相似文献   

3.
Cordycepin inhibited efficiently viral mRNA and polyadenylic acid syntheses in vaccinia virus-infected cells, but allowed the shutoff of host protein synthesis to occur. Therefore, cordycepin was used to study this shutoff in the absence of gene expression. Ribosome transit time was increased in infected cells, revealing an inhibition at the level of elongation and/or release of polypeptide chains. However, the disappearance of heavy polysomes in vaccinia virus-infected cells showed that the inhibition of host protein synthesis resulted predominantly from a block at the stage of initiation. This conclusion was confirmed by the recovery of heavy polyribosomes when low levels of cycloheximide were added to slow down ribosome release from the mRNA. Similar amounts of cellular mRNA (present in the polyribosomes) were found in vaccinia virus-infected cells and in mock-infected cels (exposed to cordycepin), showing that the cellular mRNA was not inactivated in these conditions. It was concluded that a component of the vaccinia virion inhibits, in the absence of viral RNA and polyadenylic acid syntheses, host protein synthesis at the level of initiation and, to a lesser extent, at the level of elongation (and/or release) of polypeptide chains.  相似文献   

4.
In embryo axes excised from mature horse chestnut (Aesculus hippocastanum L.) seeds, both freshly-fallen and subjected to cold stratification, the ability for growth was studied. While excised axes were kept on water at 28°C for 3 days, their fresh weight and length increased, the polypeptide composition of soluble proteins changed, the content of some heat-stable polypeptides decreased, and the capacity for protein synthesis in vivo retained. All these processes were similar to those in the axes of intact seeds during stratification until radicle protrusion. Growth of excised axes accelerated with the increasing duration of stratification. Cycloheximide (50 mg/l) and -amanitin (7 mg/l) inhibited axis growth, but an inhibitor of ABA synthesis fluridone (5 mg/l) and a natural cytokinin dihydrozeatin (10–5 M) did not influence the growth rate. The growth capacity of axes excised from dormant and germinating horse chestnut seeds indicates the absence of dormancy in the axes of mature seeds. ABA (10–5 M) suppressed completely the growth of axes detached from seeds experiencing cold stratification but still not germinating, although protein synthesis was not inhibited. The axes excised from the seeds after radicle emergence were insensitive to ABA and grew actively in its presence. ABA-induced growth inhibition might be related to the suppressed synthesis of minor polypeptides required for growth or to the activated synthesis of some growth-retarding proteins. The conclusion was drawn that the excised axes could be used as a model for studying the processes preceding visible germination of recalcitrant seeds.  相似文献   

5.
We investigated the effect of ileal bile acid transport on the regulation of classic and alternative bile acid synthesis in cholesterol-fed rats and rabbits. Bile acid pool sizes, fecal bile acid outputs (synthesis rates), and the activities of cholesterol 7alpha-hydroxylase (classic bile acid synthesis) and cholesterol 27-hydroxylase (alternative bile acid synthesis) were related to ileal bile acid transporter expression (ileal apical sodium-dependent bile acid transporter, ASBT). Plasma cholesterol levels rose 2.1-times in rats (98 +/- 19 mg/dl) and 31-times (986 +/- 188 mg/dl) in rabbits. The bile acid pool size remained constant (55 +/- 17 mg vs. 61 +/- 18 mg) in rats but doubled (254 +/- 46 to 533 +/- 53 mg) in rabbits. ASBT protein expression did not change in rats but rose 31% (P < 0.05) in rabbits. Fecal bile acid outputs that reflected bile acid synthesis increased 2- and 2.4-times (P < 0.05) in cholesterol-fed rats and rabbits, respectively. Cholesterol 7alpha-hydroxylase activity rose 33% (24 +/- 2.4 vs. 18 +/- 1.6 pmol/mg/min, P < 0.01) and mRNA levels increased 50% (P < 0.01) in rats but decreased 68% and 79%, respectively, in cholesterol-fed rabbits. Cholesterol 27-hydroxylase activity remained unchanged in rats but rose 62% (P < 0.05) in rabbits. Classic bile acid synthesis (cholesterol 7alpha-hydroxylase) was inhibited in rabbits because an enlarged bile acid pool developed from enhanced ileal bile acid transport. In contrast, in rats, cholesterol 7alpha-hydroxylase was stimulated but the bile acid pool did not enlarge because ASBT did not change. Therefore, although bile acid synthesis was increased via different pathways in rats and rabbits, enhanced ileal bile acid transport was critical for enlarging the bile acid pool size that exerted feedback regulation on cholesterol 7alpha-hydroxylase in rabbits.  相似文献   

6.
Variation in sorghum mitochondrial translation products has enabled fertile (Kafir) cytoplasm to be distinguished from Milo cytoplasmic male sterile cytoplasm and from three alternative sources of cytoplasmic male sterile cytoplasm. Mitochondria from Milo cytoplasm synthesised a 65 000 mol. wt. polypeptide which was not synthesised by those from Kafir cytoplasm. In the cytoplasmic male sterile combination of Kafir nucleus in Milo cytoplasm synthesis of this polypeptide was dramatically increased. Mitochondria from two cytoplasmic male sterile lines (Kafir nucleus in IS1112 cytoplasm and Yellow Feterita nucleus in M35-1 cytoplasm) did not synthesise the 65 000 mol. wt. polypeptide but synthesised additional high molecular weight polypeptides (from 54 000 to 82 000 mol. wt.), the major one being 82 000. Mitochondria from cytoplasm IS1112 were also distinguished by synthesis of an additional 12 000 mol. wt. polypeptide. Mitochondria from the cytoplasmic male sterile line Martin nucleus in 9E cytoplasm synthesised an additional 42 000 mol. wt. polypeptide but did not synthesise a 38 000 mol. wt. polypeptide detected in all other cytoplasms. Immunoprecipitation of mitochondrial translation products with antiserum raised against subunit I of yeast cytochrome oxidase tentatively identified the 38 000 mol. wt. polypeptide as subunit I of sorghum cytochrome oxidase. The 42 000 mol. wt. polypeptide was also immuno-precipitated by this antiserum and thus is probably an altered form of cytochrome oxidase subunit I.Analysis of native mitochondrial DNA by agarose gel electrophoresis revealed the presence of two plasmid-like DNA species of molecular weight 5.3 and 5.7 kb in the cytoplasmic male sterile lines Kafir nucleus in cytoplasm IS1112 and Yellow Feterita nucleus in M35-1 cytoplasm. Thus there is a positive correlation between the synthesis of the 82 000 mol. wt. polypeptide and the presence of the additional DNA species.  相似文献   

7.
Sterol balance measurements using isotopic and chromatographic techniques were carried out in rats fed diets containing beta-sitosterol (0.8%) and cholesterol (1.2%). The activities of the rate-limiting enzymes of cholesterol synthesis (beta-hydroxy-beta-methylglutaryl-CoA reductase, EC 1.1.1.34) and bile acid synthesis (cholesterol 7 alpha-hydroxylase) were determined in the same animals. Cholesterol feeding increased cholesterol absorption from 1.2 to 70 mg/day. The increased absorption was compensated for by inhibition of hepatic cholesterol synthesis, enhanced conversion of cholesterol to bile acids (from 13.7 to 27.3 mg/day) and a slight increase in the excretion of endogenous neutral steroids (from 7.7 to 11.2 mg/day). Despite the adaptation there was accumulation of cholesterol in the liver (from 2.2 to 9.2 mg/g). Beta-Sitosterol feeding inhibited cholesterol absorption (calculated absorption was zero). In these rats there was enhanced cholesterol synthesis (from 20.0 to 28.8 mg/day, but no change in the rates of bile acid formation. Measurements of the activities of the rate-limiting enzymes showed fair correlation with cholesterol-bile acid balance. In cholesterol fed animals, beta-hydroxy-beta-methylglutaryl-CoA reductase was inhibited 80% and cholesterol 7 alpha-hydroxylase was enhanced 61%. In beta-sitosterol-fed animals, the reductase was increased 2-fold and cholesterol 7 alpha-hydroxylase was not significantly different from controls.  相似文献   

8.
9.
硫酯酶(thioesterase, TE)具有区域定向性(regiospecific)、化学定向性(chemospecific)及立体定向性(stereospecific)的特点。这些特性决定了TE作为生物催化剂(biocatalysis)在工业生产中具有较高的应用价值和广阔的应用前景。McyC-TE (microcystin thioesterase, McyC TE)来自铜绿微囊藻(microcystis aeruginosa)NRPS/PKS生物合成基因簇。我们利用正交试验提高McyC TE表达量,得到稳定的诱导表达条件,并结合成熟的线性多肽化学合成法对其底物适用性做了进一步研究。得到的最佳诱导表达条件为:诱导时机2 h,诱导剂异丙基-β-D-硫代半乳糖苷(isopropyl-β-D-thiogalactopyranoside, IPTG)浓度0.75 mmol/L,诱导时间6 h,诱导转速210 r/min,诱导温度20 ℃,使TE的表达量由8.75 mg/L提高至22.15 mg/L,时间缩短了6.5 h。TE表达量的大幅度提升和表达时间的缩短为将来酶的结构及催化机制研究奠定了基础。TE底物适用性研究结果发现:McyC TE并不遵循“4 n + 2原则”;底物中转角过多不仅不利于环肽的形成,更可能形成卷曲影响环化;无D型氨基酸亦可通过加入其它位阻较小较灵活的Gly或者自带天然转角Pro的可弱化肽链的刚性,促进催化反应;含苯环的Phe的引入在一定程度上阻碍了环化;底物无肽链氨基酸数目奇偶性的选择;延长多肽链长度也可环化,McyC-TE的底物容忍度较大,使天然多肽药物筛选范围增大,也为增强天然多肽药物药效增加了改良方案,为进一步研究McyC TE的催化功能提供了实验基础。  相似文献   

10.
An intraperitoneal injection of either leucine (1.57 mg/g body wt) or valine (2 mg/g body wt) into newborn mice led to a rapid accumulation of inactive monoribosomes in their brains. Invitro measurements of protein synthesis by the remaining active ribosomes in leucine-treated mice revealed that polypeptide chain elongation was also inhibited. When a mixture of the seven amino acids from the leucine transport system was injected (0.15 mg each amino acid/g body wt) following the valine or leucine treatment, brain monoribosomes did not accumulate and elongation rates in the leucine-treated mice were only slightly altered.  相似文献   

11.
Several fractions of proteolipids fromTorpedo electroplax were separated by DEAE-cellulose chromatography in organic solvents, and the sulphydryl groups were determined by a spectrophotometric method. On the same fractions the covalent labeling with iodo-[3H]acetic acid to sulphydryl groups was studied. In total proteolipids there were 30.3 nmol/mg protein of sulphydryl groups of which 20.6 nmoles were in the form of disulfide bonds and 10.9 nmol as free—SH groups. The highest content of sulphydryl groups (36.7 nmol/mg protein) was found in fraction II; while fraction I, that binds the cholinergic ligands, has a lower content (23.7 nmol/mg protein). The 42 Kdaltons polypeptide, which is the major band in Fraction II, has the strongest labeling with iodo-[3H]acetic acid, while the 39 Kdaltons cholinergic polypeptide shows a lower labeling. The importance of proteolipids as channel-forming macromolecules is discussed in connection with the possible significance of the 42 Kdaltons polypeptide.  相似文献   

12.
Summary Recent work from our laboratory (Kim and Wolf, J Biol Chem 262: 365–371, 1987) has shown increased uptake of labeled amino acids into fibronectin (FN), increased net synthesis of FN and increased levels of FN-mRNA in primary cultures of hepatocytes from vitamin A-deficient rats compared to controls. We now find, surprisingly, decreased uptake of labeled sugars into the oligosaccharide chains of FN from vitamin A-deficient hepatocytes. This decrease could be reversed by added retinoic acid at physiological concentration. At the same time, FN from deficient hepatocytes (–A.FN) was more susceptible to proteolytic degradation. Decreased uptake of the core sugar mannose into –A.FN was similar to that of glucosamine, yet the percent of label in sialic acid was the same as in +A.FN, suggesting a smaller number of oligosaccharide chains per molecule of –A.FN. Upon enzymatic removal of oligosaccharide and labeling with sodium borotritide, it was found that both –A.FN and +A.FN had biantennary oligosaccharide structures. Selective enzymatic removal of sialic acid showed that +A.FN had both sialic acids in an 23 linkage, whereas –A.FN apparently had one 23 and one 26-linked sialic acid. The borotritide experiments allowed us to calculate that +A.FN appeared to have 5 oligosaccharide chains per FN monomer, whereas the –A. FN showed only 4 chains. These results would account for the decreased glycosylation and increased susceptibility to proteolysis of the –A. FN. We conclude that vitamin A controls both the rate of synthesis of the polypeptide chain of FN via its mRNA, as well as the rate of its glycosylation.Abbreviations FN Fibronectin - ELISA Enzyme-linked Immunosorbent Assay - DOC Deoxycholate - TCA Trichloroacetic Acid - PMSF Phenylmethylsulfonyl Fluoride - PBS Phosphate-buffered Saline - BSA Bovine Serum Albumin - AGP Alpha-1 acid Glycoprotein - SDS-PAGE Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis  相似文献   

13.
14.
The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.  相似文献   

15.
Subjecting primary cultures of bovine brain microvessel endothelial cells to thermal stress (heat shock) results in: (1) an inhibition of further tight junction assembly, (2) the disappearance and/or disassembly of tight junctions, (3) a 30-fold increase in the number of plasmic fracture (PF)-face intramembrane particles, and (4) the new and/or enhanced synthesis of at least three heat-shock polypeptides (HSPs) with molecular masses of approximately 100,000, 90,000 and 70,000. Endothelial cells which are heat-shocked and allowed to recover at 37 degrees C exhibit, within the first 2 h, a marked depression in the synthesis of HSPs and the new and/or enhanced synthesis of a 47,000 dalton "recovery" polypeptide. In later periods of recovery (2-4 h), the synthesis of this polypeptide is even more pronounced and is accompanied by the new and/or enhanced synthesis of a polypeptide(s) with a molecular mass of 35 to 37,000. The appearance of these "recovery protein(s)" in the endothelial cells is concomitant with a decrease in the number of PF-face intramembrane particles and the resumption of tight junction assembly. Results of this study suggest that some of the HSPs synthesized by thermally-stressed cultures of brain endothelial cells may activate or be directly involved in a mechanism(s) to ensure survival of these cells by decreasing membrane fluidity and stabilizing the plasma membrane of these cells. Moreover, our results also suggest that the recovery of these cells from the stress of heat shock is accompanied by the synthesis of "recovery" proteins which, in some manner, may be directly involved in, or necessary for, rapidly reversing the membrane-stabilizing effect of heat shock by promoting membrane fluidity and the apparent amplified synthesis and assembly and/or reassembly of tight junctions.  相似文献   

16.
Vesicular monoamine transporter‐2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N‐(1,2R‐dihydroxylpropyl)‐2,6‐cis‐di(4‐methoxyphenethyl)piperidine hydrochloride (GZ‐793A; 15 or 30 mg/kg) on METH‐induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward‐relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ‐793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time‐dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ‐793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ‐793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH‐induced increase in extracellular DA. Both LOB and GZ‐793A enhanced the duration of the METH‐induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ‐793A decreased synthesis; no effect of METH or GZ‐793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time‐dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ‐793A to decrease METH reward.

  相似文献   


17.
Two concepts of protein folding are known. One of them, the cotranslational concept, states that a protein folds during the synthesis of the polypeptide chain on the ribosome. According to the other, the posttranslational concept, the protein starts to fold just after the synthesis of its polypeptide chain. This article attempts to show that the posttranslational concept is hardly suited to solve the problem of protein folding. In our opinion, polypeptide chains cannot be represented as random coils. They are stiff chain-like macromolecules rather than flexible ones: the single bond rotational barriers of a polypeptide substantially exceed the accepted standard values; even in strong denaturing conditions, a protein possesses a considerable amount of residual folded structures. We believe that the popular "hierarchical" models for the protein folding mechanism are not realistic because the formation of secondary and tertiary structures of proteins occurs simultaneously and cooperatively. The time for the elongation of a polypeptide chain by one amino acid residue during biosynthesis exceeds considerably the time of the formation of alpha-helices and beta-sheets in proteins as well as the time supposed for the spatial structure formation of a native protein during renaturation. Thus, we believe that the mechanism of protein folding in vivo cannot be clarified by denaturation-renaturation experiments. In our opinion, the phenomenon of protein renaturation is no more than the restoration of native protein conformation (which initially forms cotranslationally) disrupted during denaturation, and thus denaturation-renaturation experiments cannot serve as a model to clarify the mechanism of protein folding.  相似文献   

18.
The gene from Xanthomonas campestris pv. phaseoli for glutamate 1-semialdehyde (GSA) aminomutase, which is involved in the C5 pathway for synthesis of -aminolevulinic acid (ALA), was cloned onto a multicopy plasmid, pUC18, by the complementation of an ALA-deficient mutant (hemL) of Escherichia coli. Subcloning of deletion fragments from the initial 3.5-kb chromosomal fragment allowed the isolation of a 1.7-kb fragment which could complement the hemL mutation. Nucleotide sequence analysis of the 1.7-kb DNA fragment revealed an open reading frame (ORF) that is located downstream from a potential promoter sequence and a ribosome-binding site. The ORF encodes a polypeptide of 429 amino acid residues, and the deduced molecular mass of this polypeptide is 45,043 Da. The amino acid sequence shows a high degree of homology to the HemL proteins from other organisms, and a putative binding site for pyridoxal 5-phosphate is conserved. Correspondence to: Y. Murooka  相似文献   

19.
The multiplication of Ulster 73 virus, an avian strain of type A influenza virus, was blocked in chick embryo fibroblast cells, CEF, by treatment with 0.5 microg/ml of chromomycin A3 whereas in LLC-MK2 cells no inhibition of replication was observed. Virus-induced polypeptide synthesis in chick embryo fibroblast cells was confined to the synthesis of PB2, PB1 and PA subunits of the RNA dependent-RNA polymerase, the nucleoprotein NP, the non-structural protein NS1, the haemagglutinin HA, the non-structural protein NS2; only the membrane M1 polypeptide synthesis was greatly inhibited. Viral unpolyadenylated cRNAs synthesis was studied at a late time of the infection, 8 hours p.i.: chromomycin A3 was able to inhibit the "novo" synthesis of complementary RNA poly(A)- and segment 7 of virion RNA. The mode of action of the drug in chick embryo fibroblast cells is discussed.  相似文献   

20.
The gene coding for the glutaryl 7-aminocephalosporanic acid (GL 7-ACA) acylase from Pseudomonas diminuta KAC-1 was cloned and expressed in Escherichia coli. The acylase gene was composed of 2160 base pairs and encoded a polypeptide of 720 amino acid residues. The E. coli BL21 carrying pET2, the plasmid construct for high expression of GL 7-ACA acylase gene, produced this enzyme at approx. 30% of the total proteins with 3.2 units activity mg protein–1. Growth at temperature below 31 °C and deletion of signal peptide increased the processing of precursor acylase to active enzyme in the recombinant E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号