首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pyridoxal 5'-phosphate-dependent enzymes have been evolved to catalyze diverse substrates and to cause the reaction to vary. 1-Aminocyclopropane-1-carboxylate deaminase catalyzes the cyclopropane ring-opening reaction followed by deamination specifically. Since it was discovered in 1978, the enzyme has been widely investigated from the mechanistic and physiological viewpoints because the substrate is a precursor of the plant hormone ethylene and the enzymatic reaction includes a cyclopropane ring-opening. We have previously reported the crystal structure of the native enzyme. Here we report the crystal structures of the two reaction intermediates created by the mutagenesis complexed with the substrate. The substrate was validated in the active site of two forms: 1). covalent-bonded external aldimine with the coenzyme in the K51T form and 2). the non-covalent interaction around the coenzyme in the Y295F form. The orientations of the substrate in both structures were quite different form each other. In concert with other site-specific mutation experiments, this experiment revealed the ingenious and unique strategies that are used to achieve the specific activity. The substrate incorporated into the active site is reactivated by a two-phenol charge relay system to lead to the formation of a Schiff base with the coenzyme. The catalytic Lys51 residue may play a novel role to abstract the methylene proton from the substrate in cooperation with other factors, the carboxylate group of the substrate and the electron-adjusting apparatuses of the coenzyme.  相似文献   

2.
The structures of tomato 1-aminocyclopropane-1-carboxylate synthase (ACS) in complex with either cofactor pyridoxal-5'-phosphate (PLP) or both PLP and inhibitor aminoethoxyvinylglycine have been determined by x-ray crystallography. The structures showed good conservation of the catalytic residues, suggesting a similar catalytic mechanism for ACS and other PLP-dependent enzymes. However, the proximity of Tyr152 to the C-gamma-S bond of model substrate S-adenosylmethionine implies its critical role in the catalysis. The concerted accomplishment of catalysis by cofactor PLP and a protein residue, as proposed on the basis of the ACS structures in this paper, may represent a general scheme for the diversity of PLP-dependent catalyses. PLP-dependent enzymes have been categorized into four types of folds. A structural comparison revealed that a core fragment of ACS in fold type I is superimposable over tryptophan synthase beta subunit in fold type II and mouse ornithine decarboxylase in fold type III, thus suggesting a divergent evolution of PLP-dependent enzymes.  相似文献   

3.
Thibodeaux CJ  Liu HW 《Biochemistry》2011,50(11):1950-1962
1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that cleaves the cyclopropane ring of ACC, to give α-ketobutyric acid and ammonia as products. The cleavage of the C(α)-C(β) bond of an amino acid substrate is a rare event in PLP-dependent enzyme catalysis. Potential chemical mechanisms involving nucleophile- or acid-catalyzed cyclopropane ring opening have been proposed for the unusual transformation catalyzed by ACCD, but the actual mode of cyclopropane ring cleavage remains obscure. In this report, we aim to elucidate the mechanistic features of ACCD catalysis by investigating the kinetic properties of ACCD from Pseudomonas sp. ACP and several of its mutant enzymes. Our studies suggest that the pK(a) of the conserved active site residue, Tyr294, is lowered by a hydrogen bonding interaction with a second conserved residue, Tyr268. This allows Tyr294 to deprotonate the incoming amino group of ACC to initiate the aldimine exchange reaction between ACC and the PLP coenzyme and also likely helps to activate Tyr294 for a role as a nucleophile to attack and cleave the cyclopropane ring of the substrate. In addition, solvent kinetic isotope effect (KIE), proton inventory, and (13)C KIE studies of the wild type enzyme suggest that the C(α)-C(β) bond cleavage step in the chemical mechanism is at least partially rate-limiting under k(cat)/K(m) conditions and is likely preceded in the mechanism by a partially rate-limiting step involving the conversion of a stable gem-diamine intermediate into a reactive external aldimine intermediate that is poised for cyclopropane ring cleavage. When viewed within the context of previous mechanistic and structural studies of ACCD enzymes, our studies are most consistent with a mode of cyclopropane ring cleavage involving nucleophilic catalysis by Tyr294.  相似文献   

4.
Zhao Z  Chen H  Li K  Du W  He S  Liu HW 《Biochemistry》2003,42(7):2089-2103
1-aminocyclopropane-1-carboxylate (ACC) deaminase is a pyridoxal 5'-phosphate (PLP) dependent enzyme which catalyzes the opening of the cyclopropane ring of ACC to give alpha-ketobutyric acid and ammonia. In an early study of this unusual C(alpha)-C(beta) ring cleavage reaction, 1-amino-2-methylenecyclopropane-1-carboxylic acid (2-methylene-ACC) was shown to be an irreversible inhibitor of ACC deaminase. The sole turnover product was identified as 3-methyl-2-oxobutenoic acid. These results provided strong evidence supporting the ring cleavage of ACC via a nucleophilic addition initiated process, thus establishing an unprecedented mechanism of coenzyme B(6) dependent catalysis. To gain further insight into this inactivation, tritiated 2-methylene-ACC was prepared and used to trap the critical enzyme nucleophiles. Our results revealed that inactivation resulted in the modification of an active site residue, Ser-78. However, an additional 5 equiv of inhibitor was also found to be incorporated into the inactivated enzyme after prolonged incubation. In addition to Ser-78, other nucleophilic residues modified include Lys-26, Cys-41, Cys-162, and Lys-245. The location of the remaining unidentified nucleophile has been narrowed down to be one of the residues between 150 and 180. Labeling at sites outside of the active site is not enzyme catalyzed and may be a consequence of the inherent reactivity of 2-methylene-ACC. Further experiments showed that Ser-78 is responsible for abstracting the alpha-H from d-vinylglycine and may serve as the base to remove the beta-H in the catalysis of ACC. However, it is also likely that Ser-78 serves as the active site nucleophile that attacks the cyclopropane ring and initiates the fragmentation of ACC, while the conserved Lys-51 is the base required for beta-H abstraction. Clearly, the cleavage of ACC to alpha-ketobutyrate by ACC deaminase represents an intriguing conversion beyond the common scope entailed by coenzyme B(6) dependent catalysts.  相似文献   

5.
1-Aminocyclopropane-l-carboxylate deaminase (ACCD) is a pyridoxal 5/-phosphate dependent enzyme that shows deaminase activity toward ACC, a precursor of plant hormone ethylene. ACCD from some soil bacteria has been reported to be able to break the cyclopropane ring of ACC to yield a-ketobutyrate and ammonia. We reported the crystal structure of ACCD from the yeast Hansenula saturnus in the absence/presence of substrate ACC, and proposed its ingenious reaction mechanisms. In order to study the enzyme further, we overexpressed the ACCD homologue protein (phAHP) from the fully decoded hyperthermophilic archearon, Pyrococcus horikoshii OT3. However, phAHP does not show ACCD activity at high temperature as well as at room temperature, though it has significant sequence similarity. Instead of ACCD activity, the GC-MS analysis and enzymatic method show that phAHP has deaminase activity toward L and D-serine. Here, we present the crystal structures of the native and ACC-complexed phAHP. The overall topology of the phAHP structure is very similar to that of ACCD; however, critical differences were observed around the active site. Here, the differences of enzymatic activity between phAHP and ACCD are discussed based on the structural differences of these two proteins. We suggest that the catalytic disagreement between these two enzymes comes from the difference of the residues near the pyridine ring of pyridoxal 5'-phosphate (PLP), not the difference of the catalytic residues themselves. We also propose a condition necessary in the primary sequence to have ACCD activity.  相似文献   

6.
The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase promotes plant growth by sequestering and cleaving plant-produced ACC thereby lowering the level of ethylene in the plant. Decreased ethylene levels allow the plant to be more resistant to a wide variety of environmental stresses. Here the biochemical reaction mechanisms involved in ACC deaminase activity are critically reviewed.  相似文献   

7.
Decarboxylation of amino acid is a key step for biosynthesis of several important cellular metabolites in the biological systems. This process is catalyzed by amino acid decarboxylases and most of them use pyridoxal-5'-phosphate (PLP) as a co-factor. PLP is bound to the active site of the enzyme by various interactions with the neighboring amino acid residues. In the present investigation, density functional theory (DFT) and real-time dynamics studies on both ligand-free and ligand-bound dopa decarboxylases (DDC) have been carried out in order to elucidate the factors responsible for facile decarboxylation and also for proper binding of PLP in the active site of the enzyme. It has been found that in the crystal structure Asp271 interacts with the pyridine nitrogen atom of PLP through H-bonding in both native and substrate-bound DDC. On the contrary, Thr246 is in close proximity to the oxygen of 3-OH ofPLP pyridine ring only in the substrate-bound DDC. In the ligand-free enzyme, the distance between the oxygen atom of 3-OH group of PLP pyridine ring and oxygen atom of Thr246 hydroxyl group is not favorable for hydrogen bonding. Thus, present study reveals that hydrogen bonding with 03 of PLP with a hydrogen bond donor residue provided by the enzyme plays an important role in the decarboxylation process.  相似文献   

8.
The enzyme 1-aminocyclopropane-1-carboxylate deaminase (ACCD) converts ACC, the precursor of the plant hormone ethylene, to alpha-ketobutyrate and ammonium. This enzyme has been identified in soil bacteria and has been proposed to play a key role in microbe-plant association. A soluble recombinant ACCD from Pseudomonas putida UW4 of molecular weight 41 kDa has been cloned, expressed, and purified. It showed selectivity and high activity towards the substrate ACC: K(M)=3.4+/-0.2 mM and k(cat)=146+/-5 min(-1) at pH 8.0 and 22 degrees C. The enzyme displayed optimal activity at pH 8.0 with a sharp decline to essentially no activity below pH 6.5 and a slightly less severe tapering in activity at higher pH resulting in loss of activity at pH>10. The major component of the enzyme's secondary structure was determined to be alpha-helical by circular dichroism (CD). P. putida UW4 ACCD unfolded at 60 degrees C as determined by its CD temperature profile as well as by differential scanning microcalorimetry (DSC). Enzyme activity was knocked out in the point mutant Gly44Asp. Modeling this mutation into the known yeast ACCD structure shed light on the role this highly conserved residue plays in allowing substrate accessibility to the active site. This enzyme's biochemical and biophysical properties will serve as an important reference point to which newly isolated ACC deaminases from other organisms can be compared.  相似文献   

9.
10.
Pseudomonas sp. strain ACP is capable of growth on 1-aminocyclopropane-1-carboxylate (ACC) as a nitrogen source owing to induction of the enzyme ACC deaminase and the subsequent conversion of ACC to alpha-ketobutyrate and ammonia (M. Honma, Agric. Biol. Chem. 49:567-571, 1985). The complete amino acid sequence of purified ACC deaminase was determined, and the sequence information was used to clone the ACC deaminase gene from a 6-kb EcoRI fragment of Pseudomonas sp. strain ACP DNA. DNA sequence analysis of an EcoRI-PstI subclone demonstrated an open reading frame (ORF) encoding a polypeptide with a deduced amino acid sequence identical to the protein sequence determined chemically and a predicted molecular mass of 36,674 Da. The ORF also contained an additional 72 bp of upstream sequence not predicted by the amino acid sequence. Escherichia coli minicells containing the 6-kb clone expressed a major polypeptide of the size expected for ACC deaminase which was reactive with ACC deaminase antiserum. Furthermore, a lacZ fusion with the ACC deaminase ORF resulted in the expression of active enzyme in E. coli. ACC is a key intermediate in the biosynthesis of ethylene in plants, and the use of the ACC deaminase gene to manipulate this pathway is discussed.  相似文献   

11.
[目的]以结瘤豆科植物紫花苜蓿根际土壤为研究材料,筛选具有ACC脱氨酶活力的氢氧化细菌,探索氢氧化细菌植物促生作用机制.[方法]利用持续通H2 的气体循环培养体系、矿质盐固体培养基,分离、培养氢氧化细菌,观察菌株形态并测定生理生化特征;16S rDNA序列分析法构建系统发育树;采用薄层层析法筛选ACC脱氨酶阳性菌株,茚三酮显色法测定ACC脱氨酶活力.[结果]分离的37株细菌中有8株菌氧化氢和自养生长能力较强,初步确定为氢氧化细菌,从中筛选出1株ACC脱氨酶阳性菌株WMQ-7.菌株WMQ-7的形态特征、生理生化特征与恶臭假单胞菌(Pseudomonas putida)的特征基本一致;16s rDNA序列(GenBank登录号为EU807744)在系统发育树中与恶臭假单胞菌同属一个类群,序列同源性99%.鉴定菌株WMQ-7为恶臭假单胞菌,其ACE脱氨酶活力为0.671 U/μg[结论]采用气体循环培养体系分离氢氧化细菌,克服了传统配气法的局限.ACC脱氨酶阳性菌株的筛选,为深入研究氢氧化细菌作为植物根际促生菌的菌株特性和促生机制提供理论依据.  相似文献   

12.
The structural role of the unique myosin-binding motif (m-domain) of cardiac myosin-binding protein-C remains unclear. Functionally, the m-domain is thought to directly interact with myosin, whereas phosphorylation of the m-domain has been shown to modulate interactions between myosin and actin. Here we utilized NMR to analyze the structure and dynamics of the m-domain in solution. Our studies reveal that the m-domain is composed of two subdomains, a largely disordered N-terminal portion containing three known phosphorylation sites and a more ordered and folded C-terminal portion. Chemical shift analyses, d(NN)(i, i + 1) NOEs, and (15)N{(1)H} heteronuclear NOE values show that the C-terminal subdomain (residues 315-351) is structured with three well defined helices spanning residues 317-322, 327-335, and 341-348. The tertiary structure was calculated with CS-Rosetta using complete (13)C(α), (13)C(β), (13)C', (15)N, (1)H(α), and (1)H(N) chemical shifts. An ensemble of 20 acceptable structures was selected to represent the C-terminal subdomain that exhibits a novel three-helix bundle fold. The solvent-exposed face of the third helix was found to contain the basic actin-binding motif LK(R/K)XK. In contrast, (15)N{(1)H} heteronuclear NOE values for the N-terminal subdomain are consistent with a more conformationally flexible region. Secondary structure propensity scores indicate two transient helices spanning residues 265-268 and 293-295. The presence of both transient helices is supported by weak sequential d(NN)(i, i + 1) NOEs. Thus, the m-domain consists of an N-terminal subdomain that is flexible and largely disordered and a C-terminal subdomain having a three-helix bundle fold, potentially providing an actin-binding platform.  相似文献   

13.
Two of the five domains in the structure of the ornithine decarboxylase (OrnDC) from Lactobacillus 30a share similar structural folds around the pyridoxal-5''-phosphate (PLP)-binding pocket with the aspartate aminotransferases (AspATs). Sequence comparisons focusing on conserved residues of the aligned structures reveal that this structural motif is also present in a number of other PLP-dependent enzymes including the histidine, dopa, tryptophan, glutamate, and glycine decarboxylases as well as tryptophanase and serine-hydroxymethyl transferase. However, this motif is not present in eukaryotic OrnDCs, the diaminopimelate decarboxylases, nor the Escherichia coli or oat arginine decarboxylases. The identification and comparison of residues involved in defining the different classes are discussed.  相似文献   

14.
Aims: 1‐Aminocyclopropane‐1‐carboxylate (ACC) deaminase activity is an efficient marker for bacteria to promote plant growth by lowering ethylene levels in plants. We aim to develop a method for rapidly screening bacteria containing ACC deaminase, based on a colorimetric ninhydrin assay of ACC. Methods and Results: A reliable colorimetric ninhydrin assay was developed to quantify ACC using heat‐resistant polypropylene chimney‐top 96‐well PCR plates, having the wells evenly heated in boiling water, preventing accidental contamination from boiling water and limiting evaporation. With this method to measure bacterial consumption of ACC, 44 ACC‐utilizing bacterial isolates were rapidly screened out from 311 bacterial isolates that were able to grow on minimal media containing ACC as the sole nitrogen source. The 44 ACC‐utilizing bacterial isolates showed ACC deaminase activities and belonged to the genus Burkholderia, Pseudomonas or Herbaspirillum. Conclusions: Determination of bacterial ACC consumption by the PCR‐plate ninhydrin–ACC assay is a rapid and efficient method for screening bacteria containing ACC deaminase from a large number of bacterial isolates. Significance and Impact of the Study: The PCR‐plate ninhydrin–ACC assay extends the utility of the ninhydrin reaction and enables a rapid screening of bacteria containing ACC deaminase from large numbers of bacterial isolates.  相似文献   

15.
16.
Lee YP  Kim DW  Lee MJ  Jeong MS  Kim SY  Lee SH  Jang SH  Park J  Kang TC  Won MH  Cho SW  Kwon OS  Eum WS  Choi SY 《BMB reports》2008,41(5):408-413
Pyridoxal-5'-phosphate phosphatase (PLPP) catalyzes the dephosphorylation of pyridoxal-5'-phosphate (PLP). A human brain PLPP gene was fused with a PEP-1 peptide and produced a genetic in-frame PEP-1-PLPP fusion protein. The purified PEP-1-PLPP fusion protein was efficiently transduced into PC12 cells in a time- and dose-dependent manner when added exogenously to culture media. Once inside the cells, the transduced PEP-1-PLPP fusion protein was stable for 36 h. The concentration of PLP was markedly decreased by the addition of exogenous PEP-1-PLPP to media pretreated with the vitamin B(6) precursors; pyridoxine, pyridoxal kinase and pyridoxine-5'-phosphate oxidase into cells. The results suggest that the transduction of the PEP-1-PLPP fusion protein can be one mode of PLP level regulation, and to replenish this enzyme in the various neurological disorders related to vitamin B(6).  相似文献   

17.
Adeno-associated virus serotype 9 (AAV9) has enhanced capsid-associated tropism for cardiac muscle and the ability to cross the blood-brain barrier compared to other AAV serotypes. To help identify the structural features facilitating these properties, we have used cryo-electron microscopy (cryo-EM) and three-dimensional image reconstruction (cryo-reconstruction) and X-ray crystallography to determine the structure of the AAV9 capsid at 9.7- and 2.8-Å resolutions, respectively. The AAV9 capsid exhibits the surface topology conserved in all AAVs: depressions at each icosahedral two-fold symmetry axis and surrounding each five-fold axis, three separate protrusions surrounding each three-fold axis, and a channel at each five-fold axis. The AAV9 viral protein (VP) has a conserved core structure, consisting of an eight-stranded, β-barrel motif and the αA helix, which are present in all parvovirus structures. The AAV9 VP differs in nine variable surface regions (VR-I to -IX) compared to AAV4, but at only three (VR-I, VR-II, and VR-IV) compared to AAV2 and AAV8. VR-I differences modify the raised region of the capsid surface between the two-fold and five-fold depressions. The VR-IV difference produces smaller three-fold protrusions in AAV9 that are less “pointed” than AAV2 and AAV8. Significantly, residues in the AAV9 VRs have been identified as important determinants of cellular tropism and transduction and dictate its antigenic diversity from AAV2. Hence, the AAV9 VRs likely confer the unique infection phenotypes of this serotype.  相似文献   

18.
L-Methionine gamma-lyase (MGL) catalyzes the pyridoxal 5'-phosphate (PLP) dependent alpha,gamma-elimination of L-methionine. We have determined two crystal structures of MGL from Pseudomonas putida using MAD (multiwavelength anomalous diffraction) and molecular replacement methods. The structures have been refined to an R-factor of 21.1% at 2.0 and 1.7 A resolution using synchrotron radiation diffraction data. A homotetramer with 222 symmetry is built up by non-crystallographic symmetry. Two monomers associate to build the active dimer. The spatial fold of subunits, with three functionally distinct domains and their quarternary arrangement, is similar to those of L-cystathionine beta-lyase and L-cystathionine gamma-synthase from Escherichia coli.  相似文献   

19.
The mechanism of action of trioxane antimalarial drugs is still largely controversial and warrants further investigation. We report here on the direct reaction of artemisinin with hemin, carried out in DMSO, in the absence of reducing agents. The reaction was analysed, independently, by visible spectroscopy, HPLC-ESI/MS and 1H NMR. Two isomeric artemisinin-hemin long-lived adducts are unambiguously detected. Eventual degradation of the porphyrin ring and loss of the Soret band are observed as well. Implications of the present results for the mechanism of action of artemisinin-based antimalarials are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号