首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A foot-and-mouth disease virus (FMDV) cDNA cassette containing sequences encoding the capsid precursor P1, peptide 2A and a truncated 2B (abbreviated P1-2A) of type C FMDV, has been modified to generate the authentic amino terminus and the myristoylation signal. This construct has been used to produce a recombinant baculovirus (AcMM53) which, upon infection of Spodoptera frugiperda insect cells, expressed a recombinant P1-2A precursor with a high yield. This polyprotein reacted with neutralizing monoclonal antibodies (MAbs) that bind to continuous epitopes of the major antigenic site A (also termed site 1) of capsid protein VP1. Unexpectedly, it also reacted with neutralizing MAbs which define complex, discontinuous epitopes previously identified on FMDV particles. The reactivity of MAbs with P1-2A was quantitatively similar to their reactivity with intact virus and, in both cases, the reactivity with MAbs that recognized discontinuous epitopes was lost upon heat denaturation of the antigen. The finding that a capsid precursor may fold in such a way as to maintain discontinuous epitopes involved in virus neutralization present on the virion surface opens the possibility of using unprocessed capsid precursors as novel antiviral immunogens.  相似文献   

2.
T-cell epitopes within viral polypeptide VP4 of the capsid protein of foot-and-mouth disease virus were analyzed using 15-mer peptides and peripheral blood mononuclear cells (PBMC) from vaccinated outbred pigs. An immunodominant region between VP4 residues 16 and 35 was identified, with peptide residues 20 to 34 (VP4-0) and 21 to 35 (VP4-5) particularly immunostimulatory for PBMC from all of the vaccinated pigs. CD25 upregulation on peptide-stimulated CD4(+) CD8(+) cells-dominated by Th memory cells in the pig-and inhibition using anti-major histocompatibility complex class II monoclonal antibodies indicated recognition by Th lymphocytes. VP4-0 immunogenicity was retained in a tandem peptide with the VP1 residue 137 to 156 sequential B-cell epitope. This B-cell site also retained immunogenicity, but evidence is presented that specific antibody induction in vitro required both this and the T-cell site. Heterotypic recognition of the residue 20 to 35 region was also noted. Consequently, the VP4 residue 20 to 35 region is a promiscuous, immunodominant and heterotypic T-cell antigenic site for pigs that is capable of providing help for a B-cell epitope when in tandem, thus extending the possible immunogenic repertoire of peptide vaccines.  相似文献   

3.
BACKGROUND: Foot-and-mouth disease virus (FMDV) causes a severe livestock disease, and the virus is an interesting target for virology and vaccine studies. MATERIALS AND METHODS: Here we evaluated comparatively three different viral antigen-encoding DNA sequences, delivered via two physical means (i.e., gene gun delivery into skin and electroporation delivery into muscle), for naked DNA-mediated vaccination in a mouse system. RESULTS: Both methods gave similar results, demonstrating commonality of the observed DNA vaccine effects. Immunization with a cDNA vector expressing the major viral antigen (VP1) alone routinely failed to induce the production of anti-VP1 or neutralizing antibodies in test mice. As a second approach, the plasmid L-VP1 that produces a transgenic membrane-anchored VP1 protein elicited a strong antibody response, but all test mice failed in the FMDV challenge experiment. In contrast, for mice immunized with the viral capsid precursor protein (P1) cDNA expression vector, both neutralizing antibodies and 80-100% protection in test mice were detected. CONCLUSIONS: This strategy of using the whole capsid precursor protein P1 cDNA for vaccination, intentionally without the use of virus-specific protease or other encoding genes for safety reasons, may thus be employed as a relevant experimental system for induction or upgrading of effective neutralizing antibody response, and as a convenient surrogate test system for DNA vaccination studies of FMDV and presumably other viral diseases.  相似文献   

4.
The structural proteins of the budgerigar fledgling disease virus, the first known nonmammalian polyomavirus, were analyzed by isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The major capsid protein VP1 was found to be composed of at least five distinct species having isoelectric points ranging from pH 6.45 to 5.85. By analogy with the murine polyomavirus, these species apparently result from different modifications of an initial translation product. Primary chicken embryo cells were infected in the presence of 32Pi to determine whether the virus structural proteins were modified by phosphorylation. SDS-PAGE of the purified virus structural proteins demonstrated that VP1 (along with both minor capsid proteins) was phosphorylated. Two-dimensional analysis of the radiolabeled virus showed phosphorylation of only the two most acidic isoelectric species of VP1, indicating that this posttranslational modification contributes to VP1 species heterogeneity. Phosphoamino acid analysis of 32P-labeled VP1 revealed that phosphoserine is the only phosphoamino acid present in the VP1 protein.  相似文献   

5.
Iodination of intact foot-and-mouth disease virus results in the selective labeling of VP1, substantiating its exposed location on the virion. A comparison of tryptic peptides revealed that a single tyrosine-containing peptide was labeled with iodine on intact or protease-cleaved virus. The labeled peptide from intact and protease-cleaved virus was characterized by molecular weight sizing and sequence analysis. Carboxypeptidase digestion of intact VP1, limited trypsin-cleaved VP1, and VP1 purified from bacterially contaminated tissue cultures yielded carboxyterminal residues of leucine, valine-arginine, and serine-alanine, respectively. The correlation of these findings with previous data on the amino acid sequence derived from nucleotide sequencing of serotypes A12 and O1 of foot-and-mouth disease virus VP1 places the probable exposed antigenic region of VP1 in a serotype-variable region including residues 136 through 144.  相似文献   

6.
The N-terminal region of VP1 of swine vesicular disease virus (SVDV) is highly antigenic in swine, despite its internal location in the capsid. Here we show that antibodies to this region can block infection and that allowing the virus to attach to cells increases this blockage significantly. The results indicate that upon binding to the cell, SVDV capsid undergoes a conformational change that is temperature independent and that exposes the N terminus of VP1. This process makes this region accessible to antibodies which block virus entry.  相似文献   

7.
We present evidence that the structural protein VP2 of budgerigar fledgling disease virus, an avian polyomavirus, is specifically modified by covalent attachment of myristic acid. The fatty acid linkage is insensitive to hydroxylamine treatment and thus represents the amide type of fatty acylation of proteins.  相似文献   

8.
Li Y  Sun M  Liu J  Yang Z  Zhang Z  Shen G 《Plant cell reports》2006,25(4):329-333
A tobacco chloroplast expression vector, pTRVP1, containing the foot-and-mouth disease virus (FMDV) VP1 gene and the selective marker aadA gene, was constructed and transferred to tobacco by biolistic method. Three resistant lines were obtained through spectinomycin selection, and each transgenic line was subjected to a second round of spectinomycin selection. PCR and PCR southern blot analysis revealed that the VP1 gene had integrated into the chloroplast genome. Western blot and quantification ELISA assays indicated that the VP1 gene was expressed in tobacco chloroplasts and accounted for 2–3% of total soluble protein. This suggested that plant chloroplasts were an efficient expression system for the potential production of recombinant antigens in plants.  相似文献   

9.
A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.  相似文献   

10.
The purified capsid proteins VP1, VP2, and VP3 of foot-and-mouth disease virus type A12 strain 119 emulsified with incomplete Freund's adjuvant were studied in swine and guinea pigs. Swine inoculated on days 0, 28, and 60 with 100-mug doses of VP3 were protected by day 82 against exposure to infected swine. Serums from animals inoculated with VP3 contained viral precipitating and neutralizing antibodies, but such serums recognized fewer viral antigenic determinants than did antiviral serums. Capsid proteins VP1 and VP2 did not produce detectable antiviral antibody in guinea pigs, and antiviral antibody responses in swine to a mixture of VP1, VP2, and VP3 were lower than the responses to VP3 alone. However, when swine were inoculated with VP1, VP2, and VP3 separately at different body sites, no interference with the response to VP3 was observed. Vaccine containing VP3 isolated from acetylethylenimine-treated virus appeared less protective for swine than vaccine containing VP3 from nontreated virus. Trypsinized virus, which contains the cleaved peptides VP3a and VP3b rather than intact VP3, produced approximately the same levels of antiviral antibody responses in guinea pigs as did virus. Conversely, an isolated mixture of VP3a and VP3b did not produce detectable antiviral antibody responses in guinea pigs. The VP3a-VP3b mixture did, however, sensitize guinea pigs to elicit such responses following reinoculation with a marginally effective dose of trypsinized virus.  相似文献   

11.
Synthetic peptides representing regions of the VP1 protein of foot-and-mouth disease virus strain 01 Kaufbeuren were screened for their ability to stimulate proliferation of PBMC from virus vaccinated cattle. Sites were identified at residue 21-40 (peptide FMDV32) and in the region C-terminal to residue 161. Cells responding to FMDV32 were MHC class II-restricted, CD4+ and secreted IL-2. Thus, this region is defined as a Th site. Of 19 virus vaccinated Friesian cattle, 89% (17/19) responded to purified virus while 37% (7/19; 41% of virus responders) also responded to FMDV32 suggesting that this site is immunodominant for the cattle used. Furthermore, immunisation of FMDV32 responder and non-responder cattle with a related peptide, FMDV5 (FMDV32 co-linearly synthesized with the 141-160 VP1 B cell site), induced neutralizing antibody and a virus-specific T cell population in the FMDV32-responder but not the non-responder animals.  相似文献   

12.
Epitopes on the major capsid protein of simian virus 40   总被引:1,自引:0,他引:1  
Thirteen monoclonal antibodies which react with the major capsid protein (VP1) of simian virus 40 (SV40) have been isolated. Of these, five neutralized viral infectivity when added in sufficient concentration. Seven of the antibodies reacted with denatured VP1 and also recognized fragments generated by protease or cyanogen bromide cleavage. The region of VP1 recognized by all seven antibodies was mapped within a nine-amino-acid segment located in the carboxyl portion of the protein (from amino acid positions 312 to 321). This region is likely to protrude from the surface of the protein as judged by high hydrophilicity and low hydropathy predicted from the amino acid sequence and lack of secondary structure by contrast with the rest of the protein for which predominantly beta-sheet structure is predicted. Competition between these antibodies and synthetic peptides for binding to virus particles confirmed that the continuous epitope is contained within the nine-amino-acid sequence. Competition between the different monoclonal antibodies suggested that the continuous epitope was also part of more complex discontinuous epitopes recognized by some of the other antibodies. These results support a model in which a segment of the carboxyl-terminal portion of VP1 protrudes from the surface of the virus to form an antigenic structure.  相似文献   

13.
In order to develop an anti-FMDV Asia1 type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5E1 and 5E2, were then further optimized. The result indicated that prepared anti-FMDV Asia1 mAbs had no cross-reactivity with Swine vesicular disease (SVD) and FMDV O, A and C type antigen. Their titers in abdomen liquor were 1:5×106, 1:2×106 and 1:5×106, respectively. 1B8 was found to be of IgG1 subtype, 5E1 and 5E2 belonged to IgG2b subtype. In this study, the prepared mAbs are specific for detecting FMDV type Asia1, and is potentially useful for pen-side diagnosis. Foudation items: The National high Technology Research and Development Program of China (No.2006AA10A204); The National science & Technology Pillar Program (No. 2006BAD06A17)  相似文献   

14.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is a double-stranded RNA virus. The IBDV capsid is formed by two major structural proteins, VP2 and VP3, which assemble to form a T=13 markedly nonspherical capsid. During viral infection, VP2 is initially synthesized as a precursor, called VPX, whose C end is proteolytically processed to the mature form during capsid assembly. We have computed three-dimensional maps of IBDV capsid and virus-like particles built up by VP2 alone by using electron cryomicroscopy and image-processing techniques. The IBDV single-shelled capsid is characterized by the presence of 260 protruding trimers on the outer surface. Five classes of trimers can be distinguished according to their different local environments. When VP2 is expressed alone in insect cells, dodecahedral particles form spontaneously; these may be assembled into larger, fragile icosahedral capsids built up by 12 dodecahedral capsids. Each dodecahedral capsid is an empty T=1 shell composed of 20 trimeric clusters of VP2. Structural comparison between IBDV capsids and capsids consisting of VP2 alone allowed the determination of the major capsid protein locations and the interactions between them. Whereas VP2 forms the outer protruding trimers, VP3 is found as trimers on the inner surface and may be responsible for stabilizing functions. Since elimination of the C-terminal region of VPX is correlated with the assembly of T=1 capsids, this domain might be involved (either alone or in cooperation with VP3) in the induction of different conformations of VP2 during capsid morphogenesis.  相似文献   

15.
Polyadenylated RNA isolated from the cytoplasm of mouse 3T6 cells 28 h after infection with polyoma virus has been isolated and translated in vitro. Polyoma capsid proteins VP1 and VP2 have been identified in the cell-free product by polyacrylamide gel electrophoresis, specific immunoprecipitation, and tryptic peptide fingerprinting. Polyoma mRNA species have been isolated by preparative hybridization to purified viral DNA immobilized on cellulose nitrate filters and shown to code for both VP1 and VP2. These experiments establish conditions for the isolation of late polyoma mRNA and the cell-free synthesis of polyoma capsid proteins and indicate that the active mRNA species are at least partially virus coded.  相似文献   

16.
N Verdaguer  I Fita  E Domingo    M G Mateu 《Journal of virology》1997,71(12):9813-9816
Neutralization of an aphthovirus by monovalent binding of an antibody is reported. Foot-and-mouth disease virus (FMDV) clone C-S8c1 was neutralized by monoclonal antibody (MAb) SD6, which was directed to a continuous epitope within a major antigenic site of the G-H loop of capsid protein VP1. On a molar basis, the Fab fragment was at most fivefold less active in neutralization than the intact antibody, and both blocked virus attachment to cells. Neither the antibody nor the Fab fragment caused aggregation of virions, as evidenced by sucrose gradient sedimentation studies of the antibody-virus complex formed at antibody to virion ratios of 1:50 to 1:10,000. The results of neutralization of infectivity and of ultracentrifugation are fully consistent with structural data based on X-ray crystallographic and cryoelectron microscopy studies, which showed monovalent interaction of the antibody with a critical receptor binding motif Arg-Gly-Asp. The conclusions of these neutralization studies are that (i) bivalent binding of antibody is not a requisite for strong neutralization of aphthoviruses and (ii) aggregation of viral particles, which has been proposed to be the dominant neutralization mechanism of antibodies that bind monovalently to virions, is not necessary for the neutralization of FMDV C-S8c1 by MAb SD6.  相似文献   

17.

Foot-and-mouth disease (FMD) is an economically important, global disease of cloven-hoofed animals. The conventional vaccine could bring down the incidence of disease in many parts of the world but has many limitations and in India, the disease is enzootic. More promisingly, the alternate vaccine candidates, virus-like particles (VLPs) are as immunogenic as a native virus but are more labile to heat than the live virus capsids. To produce stable VLPs, a single amino acid residue was mutated at 93 and 98 positions at VP2 inter-pentamer region of the P1-2A gene of FMD virus serotype O (IND/R2/75). The mutated capsid protein was expressed in insect cells and characterized for temperature and varying pH stability. Out of S93Y, S93F, S93C, S93H, and Y98F mutant, VLPs, S93Y, S93F, and Y98F showed improved stability at 37 °C for 75 days compared to wild capsid, which was evaluated by sandwich ELISA. Further, the stability analysis of purified VLPs either by differential scanning fluorescence (DSF) stability assay at different temperatures and pH conditions or by dissociation kinetics showed that the Y98F mutant VLPs were more stable than S93Y, S93F, S93C, and S93H mutant and wild-type VLPs. Immunization of guinea pigs with Y98F VLPs induced neutralizing antibodies and 60% of the animals were protected from the FMDV “O” 100 GPID50 challenge virus.

  相似文献   

18.
Bhattacharya B  Roy P 《Journal of virology》2008,82(21):10600-10612
Bluetongue virus (BTV) is a nonenveloped double-stranded RNA virus belonging to the family Reoviridae. The two outer capsid proteins, VP2 and VP5, are responsible for virus entry. However, little is known about the roles of these two proteins, particularly VP5, in virus trafficking and assembly. In this study, we used density gradient fractionation and methyl beta cyclodextrin, a cholesterol-sequestering drug, to demonstrate not only that VP5 copurifies with lipid raft domains in both transfected and infected cells, but also that raft domain integrity is required for BTV assembly. Previously, we showed that BTV nonstructural protein 3 (NS3) interacts with VP2 and also with cellular exocytosis and ESCRT pathway proteins, indicating its involvement in virus egress (A. R. Beaton, J. Rodriguez, Y. K. Reddy, and P. Roy, Proc. Natl. Acad. Sci. USA 99:13154-13159, 2002; C. Wirblich, B. Bhattacharya, and P. Roy J. Virol. 80:460-473, 2006). Here, we show by pull-down and confocal analysis that NS3 also interacts with VP5. Further, a conserved membrane-docking domain similar to the motif in synaptotagmin, a protein belonging to the SNARE (soluble N-ethylmaleimide-sensitive fusion attachment protein receptor) family was identified in the VP5 sequence. By site-directed mutagenesis, followed by flotation and confocal analyses, we demonstrated that raft association of VP5 depends on this domain. Together, these results indicate that VP5 possesses an autonomous signal for its membrane targeting and that the interaction of VP5 with membrane-associated NS3 might play an important role in virus assembly.  相似文献   

19.
The SV40 capsid is composed primarily of 72 pentamers of the VP1 major capsid protein. Although the capsid also contains the minor capsid protein VP2 and its amino-terminally truncated form VP3, their roles in capsid assembly remain unknown. An in vitro assembly system was used to investigate the role of VP2 in the assembly of recombinant VP1 pentamers. Under physiological salt and pH conditions, VP1 alone remained dissociated, and at pH 5.0, it assembled into tubular structures. A stoichiometric amount of VP2 allowed the assembly of VP1 pentamers into spherical particles in a pH range of 7.0 to 4.0. Electron microscopy observation, sucrose gradient sedimentation analysis, and antibody accessibility tests showed that VP2 is incorporated into VP1 particles. The functional domains of VP2 important for VP1 binding and for enhancing VP1 assembly were further explored with a series of VP2 deletion mutants. VP3 also enhanced VP1 assembly, and a region common to VP2 and VP3 (amino acids 119-272) was required to promote VP1 pentamer assembly. These results are relevant for controlling recombinant capsid formation in vitro, which is potentially useful for the in vitro development of SV40 virus vectors.  相似文献   

20.
【背景】口蹄疫(foot-and-mouth disease, FMD)是由口蹄疫病毒(foot-and-mouth disease virus, FMDV)引起的感染牛、羊和猪等偶蹄动物的主要疫病之一。口蹄疫病毒的结构蛋白VP1包含多个能够引起机体免疫反应的主要位点,因此VP1是研究亚单位疫苗的方向靶标。谷氨酸棒状杆菌 (Corynebacterium glutamicum)作为安全生产菌株,是医药用蛋白生产的优势细胞工厂。【目的】利用C. glutamicum作为受体菌株表达外源蛋白的优势实现VP1的外源表达。【方法】根据VP1结构蛋白的基因序列、相应功能和C. glutamicum的密码子偏好性设计并合成VP1基因,与pXMJ19载体连接构成重组质粒pXMJ19-VP1。C. glutamicum CGMCC 1.15647菌株用于表达VP1-6×his蛋白,并对蛋白表达元件启动子、5′非翻译端(5′UTR)、目的蛋白自身N端等进行优化,同时对培养条件等进一步优化,采用SDS-PAGE和Western blotting技术检测VP1蛋白的表达情况。最后应用间接酶联免疫吸附试验(enzyme-linked immunosorbent assay, ELISA)测定本研究中生产的VP1的免疫活性。【结果】SDS-PAGE和Western blotting分析结果表明VP1蛋白能在C. glutamicum CGMCC 1.15647菌株成功表达,将Ptac启动子替换为合成型启动子PH36能提高蛋白产量。在此基础上,通过插入不同的5′UTR序列和VP1蛋白N端氨基酸的改变能进一步提高蛋白产量并可利用CspB信号肽实现分泌表达。发酵试验表明,VP1摇瓶发酵培养最优条件为30 ℃、24 h。ELISA试验表明,本研究中的VP1可与阳性血清特异性结合。【结论】本研究在谷氨酸棒状杆菌中成功表达FMDV的VP1蛋白,并通过优化蛋白表达元件的方法进一步提高了产量,为开发新型FMD免疫诊断试剂和安全高效的亚单位疫苗奠定了良好的基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号