首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Analysis of interaction between mutations abruptus andleafy and previous data on interactions of abruptuswith homeotic mutations apetala1, apetala2, and apetala3 showed that the functions of the ABRUPTUS/PINOID (ABR/PID) gene are as follows: (1) it determines position of lateral organs on the inflorescence without specifying their identity [floral meristem (FM) or cauline leaves]; (2) in concert with theLEAFY (LFY) gene, it participates in the formation of FM; (3) it is involved in the determination and the formation of floral organ primordia in the first, second, and third whorls. Auxin accumulation in the abr mutant cells in callus culture was shown indicating the involvement of the ABR/PID gene in regulation of auxin efflux from cells. It is suggested that the ABR/PID expression in the sites of formation of FM and floral organs leads to local reduction in auxin level and/or activation of the lateral auxin flow, which in turn, enhance expression of the LFYand homeotic genes responsible for FM formation and differentiation.  相似文献   

3.
Analysis of interactions between mutations abruptus and leafy and previous data on interaction of abruptus with homeotic mutations apetala1, apetala2, and apetala3 showed that the functions of the ABRUPTUS/PINOID (ABR/PID) gene are as follows: (1) it directs pattern formation in inflorescence axis specifying the development either of floral meristem (FM) or of cauline leaves; (2) in concert with the leafy gene, it participates in the formation of FM; (3) it is involved in the determination and the formation of floral organ primordia in the first, second, and third whorls. Auxin accumulation in the abr mutant cells in callus culture was shown indicating the involvement of the ABR/PID gene in regulation of auxin efflux from cells. It is suggested that the ABR/PID expression in the sites of formation of FM and floral organs leads to local reduction in auxin level, which in turn, enhances expression of the LFY and homeotic genes responsible for FM formation and differentiation.  相似文献   

4.
苹果一个锌指蛋白基因的cDNA克隆及其表达特性分析(英文)   总被引:4,自引:0,他引:4  
A cDNA library was created from stem apex tissue from Jonathan apples (Malus domestica Borkh.), harvested in June to August, during which the plant transitions from vegetative growth to reproductive growth. From this library, we isolated an expressed sequence tag (EST) sequence containing a zinc finger motif, using this sequence, a 779 bp cDNA fragment was obtained by using 5‘ RACE, and a final full-length cDNA encoding an apple zinc finger protein (named MdZF1; GenBank accession number AB116545) was obtained by further PCR. This zinc finger motif of MdZF1 has high homology with INOETERMINATE1 (ID1) gene from maize which seemed to be involved in the transition to flowering. Northern blot and RT-PCR analyses showed that the MdZF1 expressed in the root, stem, leaves, shoot apex and floral organs of the apple, with expression levels higher in root, stem, leaves and floral shoot apex than that in floral organs (sepals, petals, stamens and pistils). Genomic Southern analysis showed that there was a single copy gene in apple genome.  相似文献   

5.
采集了处于营养生长向生殖行长转化期(6~8月)的红玉苹果(Malus domestica Borkh.)茎顶,构建了其cDNA文库,并从中分离得到了一个具有锌指结构的EST序列,又通过5`RACE的方法,从cDNA文库中找到了其上游779bp的cDNA片段.最后用PCR的方法获得了苹果锌指蛋白的全长cDNA,并命为MdZF1.该cDNA序列已在GenBank登录,登录号为AB116545.MdZF1的锌指结构域与玉米的开花转换基因ID1有高度同源性.通过对苹果不同组织、器官的Northem和RT-PCR分析表明MdZF1在根、茎、叶、顶芽以及花器官(萼片、花瓣、雄蕊、雌蕊)中都有表达.Southern分析表明MdZF1的基因组中是以单拷贝存在的.  相似文献   

6.
7.
8.
9.
水稻多逆境诱导基因OsMsr4的克隆与表达分析   总被引:2,自引:0,他引:2  
为深入了解水稻逆境反应的分子机理和发现新的耐逆相关功能基因,采用Affymetrix水稻表达芯片分析超级稻两优培九母本培矮64S(Oryza sativa L.)不同生长发育时期、不同组织器官全基因组在低温、干旱、高温逆境胁迫下的表达水平,筛选出多个多因子诱导高表达特异基因(待另文发表).OsMsr4是其中一个在多种逆境条件,各生长发育时期与组织器官,其表达量均显著上调的基因,用实时定量PCR方法对其表达水平进行了进一步的分析,所得结果与基因芯片结果基本吻合.用 PCR方法扩增获得长为550 bp全长基因序列,其编码的144个氨基酸残基形成Cys2His2型双锌指结构蛋白,并且锌指结构的α-螺旋区含有植物锌指蛋白特定的保守序列QALGGH.因此,OsMsr4有可能是TFⅢA型锌指蛋白,作为转录因子参与各种环境胁迫应答反应,调控多个逆境相关基因表达.  相似文献   

10.
11.
AGAMOUS, a key player in floral morphogenesis, specifies reproductive organ identities and regulates the timely termination of stem cell fates in the floral meristem. Here, we report that strains carrying mutations in three genes, HUA1, HUA2, and HUA ENHANCER4 (HEN4), exhibit floral defects similar to those in agamous mutants: reproductive-to-perianth organ transformation and loss of floral determinacy. HEN4 codes for a K homology (KH) domain-containing, putative RNA binding protein that interacts with HUA1, a CCCH zinc finger RNA binding protein in the nucleus. We show that HUA1 binds AGAMOUS pre-mRNA in vitro and that HEN4, HUA1, and HUA2 act in floral morphogenesis by specifically promoting the processing of AGAMOUS pre-mRNA. Our studies underscore the importance of RNA processing in modulating plant development.  相似文献   

12.
13.
The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.  相似文献   

14.
15.
? The CUP-SHAPED COTYLEDON (CUC)/NO APICAL MERISTEM (NAM) family of genes control boundary formation and lateral organ separation, which is critical for proper leaf and flower patterning. However, most downstream targets of CUC/NAM genes remain unclear. ? In a forward screen of the tobacco retrotransposon1 (Tnt1) insertion population in Medicago truncatula, we isolated a weak allele of the no-apical-meristem mutant mtnam-2. Meanwhile, we regenerated a mature plant from the null allele mtnam-1. These materials allowed us to extensively characterize the function of MtNAM and its downstream genes. ? MtNAM is highly expressed in vegetative shoot buds and inflorescence apices, specifically at boundaries between the shoot apical meristem and leaf/flower primordia. Mature plants of the regenerated null allele and the weak allele display remarkable floral phenotypes: floral whorls and organ numbers are reduced and the floral organ identity is compromised. Microarray and quantitative RT-PCR analyses revealed that all classes of floral homeotic genes are down-regulated in mtnam mutants. Mutations in MtNAM also lead to fused cotyledons and leaflets of the compound leaf as well as a defective shoot apical meristem. ? Our results revealed that MtNAM shares the role of CUC/NAM family genes in lateral organ separation and compound leaf development, and is also required for floral organ identity and development.  相似文献   

16.
17.
18.
19.
20.
Huala E  Sussex IM 《The Plant cell》1992,4(8):901-913
In the leafy mutant of Arabidopsis, most of the lateral meristems that are fated to develop as flowers in a wild-type plant develop as inflorescence branches, whereas a few develop as abnormal flowers consisting of whorls of sepals and carpels. We have isolated several new alleles of leafy and constructed a series of double mutants with leafy and other homeotic mutants affecting floral development to determine how these genes interact to specify the developmental fate of lateral meristems. We found that leafy is completely epistatic to pistillata and interacts additively with agamous in early floral whorls, whereas in later whorls leafy is epistatic to agamous. Double mutants with leafy and either apetala1 or apetala2 showed a complete loss of the whorled phyllotaxy, shortened internodes, and suppression of axillary buds typical of flowers. Our results suggest that the products of LEAFY, APETALA1, and APETALA2 together control the differentiation of lateral meristems as flowers rather than as inflorescence branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号