首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation   总被引:7,自引:0,他引:7  
Wu WJ  Tu S  Cerione RA 《Cell》2003,114(6):715-725
Cdc42 is a Ras-related protein that has been implicated in the control of normal cell growth, and when improperly regulated, in cellular transformation and invasiveness. A variety of extracellular stimuli, including epidermal growth factor (EGF), activate Cdc42. Here, we show that activation of Cdc42 protects the EGF receptor from the negative regulatory activity of the c-Cbl ubiquitin ligase. Activated Cdc42 binds to p85Cool-1 (for cloned-out-of-library)/beta-Pix (for Pak-interactive exchange factor), a protein that directly associates with c-Cbl. This inhibits the binding of Cbl by the EGF receptor and thus prevents Cbl from catalyzing receptor ubiquitination. The role played by Cdc42 in regulating the timing of EGF receptor-Cbl interactions is underscored by the fact that constitutively active Cdc42(F28L), by persistently blocking the binding of Cbl to these receptors, leads to their aberrant accumulation and sustained EGF-stimulated ERK activation, thus resulting in cellular transformation.  相似文献   

2.
Ubiquitination of the EGF receptor (EGFR) is believed to play a critical role in regulating both its localization and its stability. To elucidate the role of EGFR ubiquitination, tandem mass spectrometry was used to identify six distinct lysine residues within the kinase domain of the EGFR, which can be conjugated to ubiquitin following growth factor stimulation. Substitution of these lysine residues with arginines resulted in a dramatic decrease in overall ubiquitination but preserved normal tyrosine phosphorylation of EGFR. Ubiquitination-deficient EGFR mutants displayed a severe defect in their turnover rates but were internalized at rates comparable to those of wild-type receptors. Finally, quantitative mass spectrometry demonstrated that more than 50% of all EGFR bound ubiquitin was in the form of polyubiquitin chains, primarily linked through Lys63. Taken together, these data provide direct evidence for the role of EGFR ubiquitination in receptor targeting to the lysosome and implicate Lys63-linked polyubiquitin chains in this sorting process.  相似文献   

3.
Dopamine receptors are G-protein-coupled receptors involved in the control of motivation, learning, and fine-tuning of motor movement, as well as modulation of neuroendocrine signalling. Stimulation of G-protein-coupled receptors normally results in attenuation of signalling through desensitization, followed by internalization and down-regulation of the receptor. These processes allow the cell to regain homeostasis after exposure to extracellular stimuli and offer protection against excessive signalling.Here, we have investigated the agonist-mediated attenuation properties of the dopamine D4 receptor.We found that several hallmarks of signal attenuation such as receptor phosphorylation, internalization and degradation showed a blunted response to agonist treatment. Moreover, we did not observe recruitment of β-arrestins upon D4 receptor stimulation. We also provide evidence for the constitutive phosphorylation of two serine residues in the third intracellular loop of the D4 receptor.These data demonstrate that, when expressed in CHO, HeLa and HEK293 cells, the human D4 receptor shows resistance to agonist-mediated internalization and down-regulation. Data from neuronal cell lines, which have been reported to show low endogenous D4 receptor expression, such as the hippocampal cell line HT22 and primary rat hippocampal cells, further support these observations.  相似文献   

4.
Binding of epidermal growth factor (EGF) to its receptor results in a cascade of events that culminate in cell division. The receptor is present on the cell surface in two forms of high and low affinity binding for EGF. EGF binding activates the receptor's intracellular tyrosine kinase activity and subsequently causes the receptor to be rapidly internalized into the cell via clathrin-coated pits. We have cloned the EGF receptor cDNA into a retroviral expression vector and made mutations in vitro to investigate the function of different receptor domains. Deletion of cytoplasmic sequences abolishes high but not low affinity sites as well as impairing the ability of the protein to internalize into cells. Thus, cytoplasmic sequences must be involved in the regulation of high affinity sites and are required for EGF-induced receptor internalization. A four amino acid insertion mutation at residue 708 abolishes the protein-tyrosine kinase activity of the immunoprecipitated receptor. However, this receptor mutant exhibits both the high and low affinity states, internalizes efficiently and is able to cause cells to undergo DNA synthesis in response to EGF. Another four amino acid insertion mutation (residue 888) abolishes protein-tyrosine kinase activity, high affinity binding, internalization and mitogenic responsiveness. Finally, a chimaeric receptor composed of the extracellular EGF binding domain and the cytoplasmic v-abl kinase region transforms Rat-I cells. This chimaeric receptor possesses intrinsic protein tyrosine kinase activity which cannot be regulated by EGF. Moreover, EGF fails to induce the internalization of the chimaeric receptor.  相似文献   

5.
Endosomal trafficking of EGF receptor (EGFR) upon stimulation is a highly regulated process during receptor-mediated signaling. Recently, the sorting nexin (SNX) family has emerged as an important regulator in the membrane trafficking of EGFR. Here, we report the identification of a novel interaction between two members of the family, SNX1 and SNX5, which is mediated by the newly defined BAR domain of both SNXs. We have also shown that the PX domain of SNX5 binds specifically to PtdIns other than to PtdIns(3)P. Furthermore, the BAR domain but not the PX domain of SNX5 is sufficient for its subcellular membrane association. Functionally, overexpression of SNX5 inhibits the degradation of EGFR. This process appears to be independent of its interaction with SNX1. However, overexpression of SNX1 is able to attenuate the effect of SNX5 on EGFR degradation, suggesting the two proteins may play antagonistic roles in regulating endosomal trafficking of the receptor.  相似文献   

6.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

7.
Nerve growth factor (NGF) binding to p75(NTR) influences TrkA signaling, yet the molecular mechanism is unknown. We observe that NGF stimulates TrkA polyubiquitination, which was attenuated in p75(-/-) mouse brain. TrkA is a substrate of tumor necrosis factor receptor-associated factor 6 (TRAF6), and expression of K63R mutant ubiquitin or an absence of TRAF6 abrogated TrkA polyubiquitination and internalization. NGF stimulated formation of a TrkA/p75(NTR) complex through the p62 scaffold, recruiting the E3/TRAF6 and E2/UbcH7. Peptide targeted to the TRAF6 binding site present in p62 blocked interaction with TRAF6 and inhibited ubiquitination of TrkA, signaling, internalization, and NGF-dependent neurite outgrowth. Mutation of K485 to R blocked TRAF6 and NGF-dependent polyubiquitination of TrkA, resulting in retention of the receptor on the membrane and an absence in activation of specific signaling pathways. These findings reveal that polyubiquitination serves as a common platform for the control of receptor internalization and signaling.  相似文献   

8.
8-Cl-cAMP, a cAMP analogue that antagonizes type I cAMP-dependent protein kinase, is a novel anti-tumor agent presently under investigation in clinical trials. Herein we report the effects of this agent on epidermal growth factor receptor expression and degradation in human KB cancer cells. Exposure to 10 microM 8-Cl-cAMP for 48 h induced a 65% increase in epidermal growth factor receptor surface expression while the receptor synthesis was 22-fold enhanced. Analysis of epidermal growth factor-dependent receptor internalization in 8-Cl-cAMP-treated cells showed a higher endocytosis rate as well as an accelerated degradation which occurred together with an increased receptor ubiquitination. The enhanced degradation of epidermal growth factor receptor correlated with the lack of epidermal growth factor-induced proliferation and mitogen-activated protein kinase stimulation. The disregulation of epidermal growth factor receptor internalization and ubiquitin-dependent degradation could underlay a new mechanism of the anti-tumor activity of 8-Cl-cAMP suggesting its combination with agents that disrupt epidermal growth factor receptor signalling.  相似文献   

9.
The EGF receptor in waved-2 mice contains a point mutation that renders it kinase-deficient. We investigated how the waved-2 mutation affects the internalization and endosomal trafficking of the receptor in vivo in response to EGF. When the waved-2 mice were injected with EGF, there was approximately 50% less tyrosine phosphorylation detected in whole-liver homogenate compared to wild-type background mice. Although EGF increased the EGF receptor levels in the early and late liver endosomal fractions of waved-2 mice, its trafficking was delayed compared to wild-type mice. Ubiquitination of the EGF receptor may affect its endosomal sorting. We found that a similar amount of EGF receptor was immunoprecipitated from the endosomal fractions of EGF-treated waved-2 and wild-type with anti-ubiquitin antibody. These results demonstrate that the waved-2 EGF receptor can become ubiquitinated and can be trafficked to the late endosomes, although it appears that its kinase deficiency delays this process.  相似文献   

10.
The feline sarcoma virus oncogene v-fms has significantly contributed to the dissection of peptide growth factor action since it encodes the transmembrane tyrosine kinase gp140v-fms, a transforming version of colony-stimulating factor 1 receptor, a member of the growth factor receptor tyrosine kinase family. In this study, the functional significance of structural differences between distinct tyrosine kinase types, in particular between cellular receptors and viral transforming proteins of distinct structural types, has been further investigated, and their functional compatibility has been addressed. For this purpose, major functional domains of three structurally distinct tyrosine kinases were combined into two chimeric receptors. The cytoplasmic gp140v-fms kinase domain and the kinase domain of Rous sarcoma virus pp60v-src were each fused to the extracellular ligand-binding domain of the epidermal growth factor (EGF) receptor to create chimeras EFR and ESR, respectively, which were studied upon stable expression in NIH 3T3 fibroblasts. Both chimeras were faithfully synthesized and routed to the cell surface, where they displayed EGF-specific, low-affinity ligand-binding domains in contrast to the high- and low-affinity EGF-binding sites of normal EGF receptors. While the EFR kinase was EGF controlled for autophosphorylation and substrate phosphorylation in vitro, in vivo, and in digitonin-treated cells, the ESR kinase was not responsive to EGF. While ESR appeared to recycle to the cell surface upon endocytosis, EGF induced efficient EFR internalization and degradation, and phorbol esters stimulated protein kinase C-mediated downmodulation of EFR. Despite its ligand-inducible kinase activity, EFR was partly EGF independent in mediating mitogenesis and cell transformation, while ESR appeared biologically inactive.  相似文献   

11.
The ubiquitin (Ub)-conjugating enzymes Ubc4 and Ubc5 are involved in a variety of ubiquitination pathways in yeast, including Rsp5- and anaphase-promoting complex (APC)-mediated pathways. We have found the double deletion of UBC4 and UBC5 genes in yeast to be lethal. To investigate the essential pathway disrupted by the ubc4/ubc5 deletion, several point mutations were inserted in Ubc4. The Ubc4 active site mutation C86A and the E3-binding mutations A97D and F63A were both unable to rescue the lethal phenotype, indicating that an active E3/E2~Ub complex is required for the essential function of Ubc4/Ubc5. A mutation that specifically eliminates RING E3-catalyzed isopeptide formation but not HECT E3 transthiolation (N78S-Ubc4) rescued the lethal phenotype. Thus, the essential redundant function performed by Ubc4 and Ubc5 in yeast is with a HECT-type E3, likely the only essential HECT in yeast, Rsp5. Our results also suggest that Ubc1 can weakly replace Ubc4 to transfer mono-Ub with APC, but Ubc4 cannot replace Ubc1 for poly-Ub chain extension on APC substrates. Finally, the backside Ub-binding mutant S23R-Ubc4 has no observable effect in yeast. Together, our results are consistent with a model in which Ubc4 and Ubc5 are 1) the primary E2s for Rsp5 in yeast and 2) act as monoubiquitinating E2s in RING E3-catalyzed pathways, in contrast to the processive human ortholog UbcH5.  相似文献   

12.
13.
Mechanisms that arrest G-protein-coupled receptor (GPCR) signaling prevent uncontrolled stimulation that could cause disease. Although uncoupling from heterotrimeric G-proteins, which transiently arrests signaling, is well described, little is known about the mechanisms that permanently arrest signaling. Here we reported on the mechanisms that terminate signaling by protease-activated receptor 2 (PAR(2)), which mediated the proinflammatory and nociceptive actions of proteases. Given its irreversible mechanism of proteolytic activation, PAR(2) is a model to study the permanent arrest of GPCR signaling. By immunoprecipitation and immunoblotting, we observed that activated PAR(2) was mono-ubiquitinated. Immunofluorescence indicated that activated PAR(2) translocated from the plasma membrane to early endosomes and lysosomes where it was degraded, as determined by immunoblotting. Mutant PAR(2) lacking intracellular lysine residues (PAR(2)Delta14K/R) was expressed at the plasma membrane and signaled normally but was not ubiquitinated. Activated PAR(2) Delta14K/R internalized but was retained in early endosomes and avoided lysosomal degradation. Activation of wild type PAR(2) stimulated tyrosine phosphorylation of the ubiquitin-protein isopeptide ligase c-Cbl and promoted its interaction with PAR(2) at the plasma membrane and in endosomes in an Src-dependent manner. Dominant negative c-Cbl lacking the ring finger domain inhibited PAR(2) ubiquitination and induced retention in early endosomes, thereby impeding lysosomal degradation. Although wild type PAR(2) was degraded, and recovery of agonist responses required synthesis of new receptors, lysine mutation and dominant negative c-Cbl impeded receptor ubiquitination and degradation and allowed PAR(2) to recycle and continue to signal. Thus, c-Cbl mediated ubiquitination and lysosomal degradation of PAR(2) to irrevocably terminate signaling by this and perhaps other GPCRs.  相似文献   

14.
Recently, we demonstrated that hydrogen peroxide (H2O2) inhibits the internalization of the epidermal growth factor (EGF) receptor and the EGF-induced mono-ubiquitination of EGF receptor pathway substrate clone #15 (Eps15) in fibroblasts. In addition, it was suggested that EGF receptor internalization might be inhibited by H2O2 by inhibition of ubiquitination of proteins involved in endocytosis. Here, we show that H2O2 also inhibits the poly-ubiquitination of the EGF receptor in fibroblasts. Furthermore, recovery of the cells resulted in re-establishment of ubiquitination of both the EGF receptor and Eps15 and coincided with restoration of internalization of those receptors that had bound EGF in the presence of H2O2. In addition, EGF receptor internalization was inhibited by the sulphydryl reagent N-ethylmaleimide (NEM), indicating that intact SH groups might be required for receptor-mediated endocytosis. Furthermore, H2O2 rapidly induced an increase in the cellular ratio of GSSG:GSH (oxidized glutathione:reduced glutathione) and removal of H2O2 resulted in a fast restoration of the ratio of GSSG:GSH. Therefore, these results suggest a relation between the inhibition of internalization ubiquitination and an increase in GSSG:GSH ratio, which strengthens the hypothesis that H2O2 inhibits EGF receptor internalization by an inhibition of ubiquitination of proteins involved in EGF receptor-mediated endocytosis.  相似文献   

15.
The role of actinorganization in occupancy-induced receptor internalization remainspoorly defined. Here we report that treatment of mouse Swiss 3T3 cellswith latrunculin A, a potent inhibitor of actin polymerization(including cortical actin), inhibited the internalization of theendogenous bombesin/gastrin-releasing peptide (GRP) receptor, as judgedby uptake of 125I-labeled GRP or fluorescent Cy3-labeledbombesin. In contrast, cells pretreated with cytochalasin D showedminimal inhibition of bombesin/GRP receptor internalization. Similarly,pretreatment of Swiss 3T3 cells with the potent Rho-kinaseinhibitor HA-1077, at concentrations (10-20 µM) thatabrogated bombesin-mediated stress fiber formation, did notsignificantly alter receptor-mediated internalization of125I-GRP. These results indicate that bombesin/GRP receptorinternalization depends on latrunculin A-sensitive cortical actinrather than on rapidly turning over actin stress fibers that aredisrupted by either cytochalasin D or HA-1077. The rates andtotal levels of internalization of the endogenously expressedendothelin A receptor and epidermal growth factor receptor were alsomarkedly reduced by latrunculin A in Swiss 3T3 cells. The potency oflatrunculin A for inhibiting G protein-coupled receptor endocytosis wascomparable to that for reducing internalization of the epidermal growthfactor tyrosine kinase receptor. We conclude that cortical actinstructures, disrupted by latrunculin A, are necessary foroccupancy-induced receptor internalization in animal cells.

  相似文献   

16.
Although it is well known that the CD3/T-cell receptor (TCR) complex modulates from the surface of T cells upon exposure to monoclonal antibodies (mAb) directed against it, the fate of bound mAb has not been yet elucidated. We therefore perform direct binding experiments of 125I-labeled mAb against CD3 or TCR to investigate their fate in Jurkat T cells. We demonstrated that all mAb were progressively internalized and degraded in Jurkat T cells and that this degradation was inhibited by chloroquine, an inhibitor of lysosomal degradation enzymes. The sequestration of anti-CD3 mAb in acid compartments was furthermore shown using cytofluorometry. All together our results show that antibodies against CD3 or against TCR follow the same endocytic pathway.  相似文献   

17.
Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a region at carboxy terminus that is highly homologous to Gene-33/Mig-6/RALT. The interaction of ACK1 with EGFR was dependent on the kinase activity or tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 was colocalized with EGFR on EEA-1 positive vesicles upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNAi inhibited ligand-induced degradation of EGFR upon EGF stimulation, suggesting that ACK1 plays an important role in regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin-association (Uba) domain at the carboxy terminus, ACK1 binds to both poly- and mono-ubiquitin. Overexpression of the Uba domain-deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Taken together, our studies suggest that ACK1 senses signal of EGF and regulates ligand-induced degradation of EGFR.  相似文献   

18.
The c-Cbl protooncogene can function as a negative regulator of receptor protein tyrosine kinases (RPTKs) by targeting activated receptors for polyubiquitination and downregulation. This function requires its tyrosine kinase binding (TKB) domain for targeting RPTKs and RING finger domain to recruit E2 ubiquitin-conjugating enzymes. It has therefore been proposed that oncogenic Cbl proteins act in a dominant-negative manner to block this c-Cbl activity. In testing this hypothesis, we found that although mutations spanning the RING finger abolish c-Cbl-directed polyubiquitination and downregulation of RPTKs, they do not induce transformation. In contrast, it is mutations within a highly conserved alpha-helical structure linking the SH2 and RING finger domains that render Cbl proteins oncogenic. Thus, Cbl transformation involves effects additional to polyubiquitination of RPTKs that are independent of the RING finger and its ability to recruit E2-conjugating enzymes.  相似文献   

19.
The rate constants for internalization and subsequent extrusion of acetylcholine receptors (AChRs) during degradation in adult innervated and denervated mouse diaphragm muscles were determined using proteinase K (PK) digestion. This procedure separated 125I-α-bungarotoxin (Bgt)-labeled AChRs into PK-sensitive and PK-resistant compartments. The time course of the residual radioactivity in these two compartments suggested that they represented surface membrane and internalized compartments, respectively. The data were compatible with a mathematical model based on the assumption that during degradation of AChRs a surface compartment, A, fed an internal compartment, B, with an internalization rate constant (ki), and that B is drained from the cell with an extrusion rate constant (ko). Using the mathematical model, we were able to determine that ki and ko were, respectively, 0.068 (t1/2 ∼ 10.2 days) and 0.69–0.55 (t1/2 ∼ 1.0– 1.25 days) for innervated muscle and were, respectively, 0.69 (t1/2 ∼ 1.0 day) and 6.93 (t1/2 ∼ 0.1day) for denervated muscle. Thus, the rate for internalization was about 8–10 times slower than that for extrusion from the cell for both the slowly degrading innervated (Rs) AChRs and for the rapidly degrading denervated (Rr) AChRs. This inequality betweeen ki and ko therefore allows the combined quantity of A(t) + B(t) , usually measured in AChR degradation studies, to approximate a single exponential. J. Cell. Physiol. 181:107–112, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
Target-derived neurotrophins regulate neuronal survival and growth by interacting with cell-surface tyrosine kinase receptors. The p75 neurotrophin receptor (p75 NTR) is coexpressed with Trk receptors in long-range projection neurons, in which it facilitates neurotrophin binding to Trk and enhances Trk activity. Here, we show that TrkA and TrkB receptors undergo robust ligand-dependent ubiquitination that is dependent on activation of the endogenous Trk activity of the receptors. Coexpression of p75 NTR attenuated ubiquitination of TrkA and TrkB and delayed nerve growth factor-induced TrkA receptor internalization and receptor degradation. These results indicate that p75 NTR may prolong cell-surface Trk-dependent signalling events by negatively regulating receptor ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号