首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hepatitis C virus persistence: how to evade the immune system?   总被引:14,自引:0,他引:14  
Hepatitis C virus (HCV) is an emerging virus of medical importance. A majority of HCV infections become chronic and lead to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, those involved in the immune response of the host. Several HCV proteins also modulate cell signalling through interaction with different effectors involved in cell proliferation and apoptosis, or in the interferon-signalling pathway. In addition, HCV infects immune cells such as B and T cells, and thus affects their normal functions. These various strategies used by HCV to counter the immune response of the host are reviewed here. A better understanding of these mechanisms would help design new therapeutic targets.  相似文献   

2.
Individuals infected with hepatitis C virus (HCV) have two possible outcomes of infection, clearance or persistent infection. The focus of this review is the host mechanisms that facilitate clearance. The interaction between HCV viral components and the immune system ultimately determines the balance between the virus and host. Strong evidence points to the aspects of cellular immune response as the key determinants of outcome. The recent discovery of viral evasion strategies targeting innate immunity suggests that the interferon-alpha/beta induction pathways are also critical. A growing body of evidence has implicated polymorphisms in both innate and adaptive immune response genes as determinants of viral clearance in individuals infected with HCV.  相似文献   

3.
Serum amyloid A (SAA) is an acute-phase protein induced by a variety of inflammatory stimuli, including bacterial and viral infections. SAA was recently found to function as an opsonin for gram-negative bacteria. We report here that SAA inhibited hepatitis C virus (HCV) infection in cultured cells. SAA reduced HCV infectivity in a dose-dependent manner when added during HCV infection but not after virus entry. SAA bound HCV virions and specifically blocked HCV entry but did not affect virus attachment. These findings suggest that SAA functions as part of the host innate immune defense mechanisms against HCV infection in humans.  相似文献   

4.
Chronic hepatitis C virus (HCV) is a liver-borne infectious disease that remains a major global health threat. The mechanisms whereby HCV evades the host's immune defences and establishes persistent infection remain elusive; but they likely require a complex and coordinated interruption of the interplay between innate and adaptive immune actors. This review discusses the concept that HCV evades the host's immune response to its components partly because of its ability to inactivate the major orchestrator of the adaptive immune response - the DCs. It argues that DCs constitute an immunologically relevant cellular viral host actively targeted by HCV. This targeting disrupts TRIF- and IPS-1-dependent but not MyD88-coupled pathogen recognition receptors (PRR) sensing pathways in these infected cells to foil the networks by which innate immunity to HCV is translated into virus-specific adaptive immune-mediated host resistance. Thus, as a culprit, this cell-specific and numerically restrained DC defect offers a promising field of investigation in which to study and understand the HCV-restricted nature of the deficit in cellular immunity in persistently infected -individuals who have otherwise normal immune functions to unrelated pathogens. In this model, protective immunity is contingent on proper processing and delivery of danger signals by DCs presenting HCV antigens.  相似文献   

5.
Hepatitis C virus (HCV) chronic infection is characterized by low-level or undetectable cellular immune responses against HCV antigens. HCV proteins have been shown to affect various intracellular events and modulate immune responses, although the precise mechanisms used to mediate these effects are not fully understood. In this study, we have examined the effect of HCV proteins on the modulation of major histocompatibility complex (MHC) class II expression and other functions important for antigen presentation in humans. Expression of an HCV(1-2962) genomic clone (HCV-FL) in human fibrosarcoma cells (HT1080) inhibited gamma interferon (IFN-gamma)-induced upregulation of human leukocyte antigen-DR (HLA-DR) cell surface expression. Furthermore, inhibition of promoter activities of MHC class II transactivator (CIITA), IFN-gamma-activated site (GAS), and HLA-DR was observed in IFN-gamma-inducible HT1080 cells expressing HCV-FL by in vitro reporter assays. Exposure of human monocyte-derived dendritic cells (DCs) to cell culture-grown HCV (HCVcc) genotype 1a (clone H77) or 2a (clone JFH1) significantly inhibited DC maturation and was associated with the production of IL-10. Furthermore, DCs exposed to HCVcc were impaired in their functional ability to stimulate antigen-specific CD4-positive (CD4(+)) and CD8(+) T-cell responses. Taken together, our results indicated that HCV can have direct and/or indirect inhibitory effects on antigen-presenting cells, resulting in reduction of antigen-specific T-cell activation. These effects may account for or contribute to the low overall level of immunogenicity of HCV observed in chronically infected patients.  相似文献   

6.
Infection with hepatitis C virus (HCV) is characterized by inflammatory liver damage and a long viral persistence associated with an increased risk of developing hepatocellular carcinoma. Both in liver damage and in oncogenesis a disturbance of apoptosis has been implicated, although the underlying mechanisms in these apparently opposite processes are incompletely understood. HCV-triggered liver injury is mediated mainly by host immune mechanisms and eventually by direct cytopathic effects of HCV. Recent data shows that caspase activation, either triggered by death ligands, other cytokines, granzyme B or HCV proteins, is considerably upregulated in HCV-infected liver. Interestingly, caspase activation appears to correlate closely with the inflammatory response. Data about the role of single HCV proteins, either in cultured cells or transgenic animals models, however, are contradictory, as both pro- and anti-apoptotic effects have been observed. Nevertheless, apoptosis induction upon HCV infection may critically contribute to liver damage, while inhibition of apoptosis may result in HCV persistence and development of hepatocellular carcinoma.  相似文献   

7.
Effective innate and adaptive immune responses are essential for the control of hepatitis C virus (HCV) infection. Indeed, elimination of HCV during acute infection correlates with an early induction of innate and a delayed induction of adaptive immune responses. However, in the majority of acutely HCV-infected individuals, these responses are insufficient to clear the virus and persistence develops. In recent years, different mechanisms responsible for the failure of innate and adaptive immune responses have been identified. These include the proteolytic cleavage of molecules playing key roles in the induction of the interferon response, manipulation of interferon-induced effector proteins, interference with CD8+ T-cell function or immune escape in T- and B-cell epitopes. In this review, we discuss the possible roles of innate and adaptive immune responses in HCV clearance and the different evasion strategies used by the virus to escape these immune responses.  相似文献   

8.
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.  相似文献   

9.
Hepatitis C virus (HCV) is a serious global health problem which accounts for approximately 40% of chronic liver diseases worldwide. HCV frequently establishes a persistent infection, although it is recognized and targeted by innate immunity as well as cellular and humoral immune mechanisms. This suggests that HCV has developed powerful strategies to escape elimination by innate and adaptive immunity. HCV-induced liver injury is thought to be mainly immune-mediated rather than due to direct cytopathic effects of the virus. Hence, therapeutic strategies should target those mechanisms favoring viral persistence since unspecific enhancement of host antiviral immunity may theoretically also promote liver injury. The present review summarizes our current understanding of how the hepatitis C virus interferes with the innate antiviral host-response to establish persistent infection.  相似文献   

10.
The mechanisms of immune evasion and the role of the early immune response in chronic infection caused by hepatitis C virus (HCV) are still unclear. Here, we present evidence for a cascade of molecular events that the virus initiates to subvert the innate immune attack. The HCV core protein induced p53-dependent gene expression of TAP1 (transporter associated with antigen processing 1) and consecutive major histocompatibility complex (MHC) class I upregulation. Moreover, in p53-deficient liver cell lines, only reconstitution with wild-type p53, but not mutated p53 lacking DNA binding capacity, showed this effect. As a consequence of increased MHC class I expression, a significantly downregulated cytotoxic activity of natural killer (NK) cells against HCV core-transfected liver cells was observed, whereas lysis by HCV-specific cytotoxic T cells was not affected. These results demonstrate a way in which HCV avoids recognition by NK cells that may contribute to the establishment of a chronic infection.  相似文献   

11.
IFN-alpha production by plasmacytoid dendritic cells (PDCs) is critical in antiviral immunity. In the present study, we evaluated the IFN-alpha-producing capacity of PDCs of patients with chronic hepatitis C virus (HCV) infection in treatment-naive, sustained responder, and nonresponder patients. IFN-alpha production was tested in PBMCs or isolated PDCs after TLR9 stimulation. Treatment-naive patients with chronic HCV infection had reduced frequency of circulating PDCs due to increased apoptosis and showed diminished IFN-alpha production after stimulation with TLR9 ligands. These PDC defects correlated with the presence of HCV and were in contrast with normal PDC functions of sustained responders. HCV core protein, which was detectable in the plasma of infected patients, reduced TLR9-triggered IFN-alpha and increased TNF-alpha and IL-10 production in PBMCs but not in isolated PDCs, suggesting HCV core induced PDC defects. Indeed, addition of rTNF-alpha and IL-10 induced apoptosis and inhibited IFN-alpha production in PDCs. Neutralization of TNF-alpha and/or IL-10 prevented HCV core-induced inhibition of IFN-alpha production. We identified CD14+ monocytes as the source of TNF-alpha and IL-10 in the HCV core-induced inhibition of PDC IFN-alpha production. Anti-TLR2-, not anti-TLR4-, blocking Ab prevented the HCV core-induced inhibition of IFN-alpha production. In conclusion, our results suggest that HCV interferes with antiviral immunity through TLR2-mediated monocyte activation triggered by the HCV core protein to induce cytokines that in turn lead to PDC apoptosis and inhibit IFN-alpha production. These mechanisms are likely to contribute to HCV viral escape from immune responses.  相似文献   

12.
Literature data on the pathogenesis of mixed infection caused by human immunodeficiency viruses (HIV), type I, and hepatitis C virus (HCV), as well as on possible mechanisms of the reciprocal influence of these viruses necessary to understand their co-existence, are reviewed. The extrahepatic replication of HCV, its role in the infectious process and its possible contribution to the course of mono- and co-infection are considered in detail. Much attention is paid to the specific features of immune response in HIV-HCV infection and the immunomediated mechanisms of the reciprocal influence of the viruses. The problem of the hepatotoxicity of antiretrovirus preparations, actively discussed in literature, is considered from biological positions. The role of the phenomenon of immunity reconstitution in cases of the exacerbation of chronic HCV infection in the course of the treatment of HIV infection as well as of other factors, in particular, infections caused by other parenterally transmitted viruses, in the course of HIV-HCV co-infection is pointed out.  相似文献   

13.
Several hepatitis C virus (HCV) proteins have been shown in vitro to interact with host cellular components that are involved in immune regulation. However, there is a paucity of data supporting the relevance of these observations to the in vivo situation. To test the hypothesis that such an interaction suppresses immune responses, we studied a line of transgenic C57BL/6 mice that express the HCV core and envelope proteins in the liver. The potential effects of these proteins on the hepatic immune response were evaluated by challenging these mice with a hepatotropic adenovirus. Both transgenic and nontransgenic mice developed similar courses of infection and cleared the virus from the liver by 28 days postinfection. Both groups of mice mounted similar immunoglobulin G (IgG), IgG2a, interleukin-2, and tumor necrosis factor alpha responses against the virus. Additionally, BALB/c mice were able to clear infection with recombinant adenovirus that does or does not express the HCV core and envelope 1 proteins in the same manner. These data suggest that HCV core and envelope proteins do not inhibit the hepatic antiviral mechanisms in these murine experimental systems and thus favor a model in which HCV circumvents host responses through a mechanism that does not involve general suppression of intrahepatic immune responses.  相似文献   

14.
In order to overcome the instability of CpG ODN in vivo, sequence diversity, and individual differences, eleven CpG ODN fragments were meticulously selected and linked to form a Multi-CpG, which were repeatedly inserted into the cloning vector pUC19 for constructing the recombinant plasmid pUCpGs10 containing ten of Multi-CpG. Using the multi-genotype HCV E1 and multi-epitope complex HCV-T as immunogens, and plasmid pUCpGs10 as the immune adjuvant, Balb/c mice were immunized through nasal and subcutaneous immunization. Strong-specific humoral and cellular immune response were induced, which can obviously inhibit the growth of homograft expressing HCV antigen. The immune adjuvant effect of pUCpGs10 closely matched that of Freund’s complete adjuvant. The plasmid pUCpGs10 can significantly improve IgA content in serum and different mucosal extract and systematical T-cell response via intranasal immunization. In conclusions, the newly constructed immunostimulatory plasmid pUCpGs10 is able to effectively activate the humoral and cellular immune activity, and possesses activation on mucosal immune response.  相似文献   

15.
The hepatitis C virus (HCV) core protein is a multifunctional protein that can interfere with the induction of an immune response. It has been reported that the HCV core protein inhibits HBV replication in vitro. In this study, we test the effect of the HCV core gene on the priming of the immune response to hepatitis B surface antigen (HBsAg) and on the replication of HBV in vivo. Our results showed that the full-length HCV core gene inhibits the induction of an immune response to the heterogeneous antigen, HBsAg, at the site of inoculation when HCV core (pC191) and HBsAg (pHBsAg) expression plasmids are co-administered as DNA vaccines into BALB/c mice. The observed interference effect of the HCV core occurs in the priming stage and is limited to the DNA form of the HBsAg antigen, but not to the protein form. The HCV core reduces the protective effect of the HBsAg when the HBsAg and the HCV core are co-administered as vaccines in an HBV hydrodynamic mouse model because the HCV core induces immune tolerance to the heterogeneous HBsAg DNA antigen. These results suggest that HCV core may play an important role in viral persistence by the attenuation of host immune responses to different antigens. We further tested whether the HCV core interfered with the priming of the immune response in hepatocytes via the hydrodynamic co-injection of an HBV replication-competent plasmid and an HCV core plasmid. The HCV core inhibited HBV replication and antigen expression in both BALB/c (H-2d) and C57BL/6 (H-2b) mice, the mouse models of acute and chronic hepatitis B virus infections. Thus, the HCV core inhibits the induction of a specific immune response to an HBsAg DNA vaccine. However, HCV C also interferes with HBV gene expression and replication in vivo, as observed in patients with coinfection.  相似文献   

16.
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.  相似文献   

17.
Viral hepatitis caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infections poses a significant burden to the public health system. Although HBV and HCV differ in structure and life cycles, they share unique characteristics, such as tropism to infect hepatocytes and association with hepatic and extrahepatic disorders that are of innate immunity nature. In response to HBV and HCV infection, the liver innate immune cells eradicate pathogens by recognizing specific molecules expressed by pathogens via distinct cellular pattern recognition receptors whose triggering activates intracellular signalling pathways inducing cytokines, interferons and anti‐viral response genes that collectively function to clear infections. However, HBV and HCV evolve strategies to inactivate innate signalling factors and as such establish persistent infections without being recognized by the innate immunity. We review recent insights into how HBV and HCV are sensed and how they evade innate immunity to establish chronicity. Understanding the mechanisms of viral hepatitis is mandatory to develop effective and safe therapies for eradication of viral hepatitis.  相似文献   

18.
Sir D  Liang C  Chen WL  Jung JU  Ou JH 《Autophagy》2008,4(6):830-831
Autophagy removes long-lived proteins and damaged organelles and is important for maintaining cellular homeostasis. It can also serve in innate immunity to remove intracellular pathogens. As such, viruses have evolved different mechanisms to subvert this innate immune response. We have recently demonstrated that hepatitis C virus (HCV) can also suppress autophagic protein degradation by suppressing the fusion between autophagosomes and lysosomes. This suppression causes the accumulation of autophagosomes and enhances HCV RNA replication.(1) Our further analysis indicated that the induction of autophagosomes by HCV is dependent on the unfolded protein response (UPR). Our studies thus delineate a molecular pathway by which HCV induces autophagosomes. The prolonged perturbation of the autophagic pathway by HCV likely plays an important role in HCV pathogenesis.  相似文献   

19.
Hepatitis C virus (HCV) was discovered in 1989. HCV is a positive single-strand RNA. We all have thought, that HCV can replicate only in liver tissue, but now we know, that HCV can replicate in extrahepatic tissue as well. In about 48-86% of HCV infected patients, chronic hepatitis C (CHC) has been noticed and eventually, after tens of years, liver insufficiency, cirrhosis or hepatocellular carcinoma. The current recommended treatment for CHC is a combination of pegylated-interferon alpha and Ribavirin. Presently it is known, that HCV infection can persist as an occult infection. RNA HCV can be detected in patients after successful treatment for CHC or spontaneous elimination. Persistent HCV replication in hepatocytes or lymphoid cells would likely lead to continuous antigenic stimulation of the immune system. This prolonged replication may contribute to the immune tolerance of HCV, impairment of immune response and even further virus persistence. This occult infection grows more important in transplantation.  相似文献   

20.
Clinical data suggest that iron is a negative factor in chronic hepatitis C; however, the molecular mechanisms by which iron modulates the infectious cycle of hepatitis C virus (HCV) remain elusive. To explore this, we utilized cells expressing a HCV replicon as a well-established model for viral replication. We demonstrate that iron administration dramatically inhibits the expression of viral proteins and RNA, without significantly affecting its translation or stability. Experiments with purified recombinant HCV RNA polymerase (NS5B) revealed that iron binds specifically and with high affinity (apparent Kd: 6 and 60 microM for Fe2+ and Fe3+, respectively) to the protein's Mg2+-binding pocket, thereby inhibiting its enzymatic activity. We propose that iron impairs HCV replication by inactivating NS5B and that its negative effects in chronic hepatitis C may be primarily due to attenuation of antiviral immune responses. Our data provide a direct molecular link between iron and HCV replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号