首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Na+ +K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble form depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na+ +K+)-ATPase in its pH optimum being around 7.0, showing optimal activity at Mg2+:ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM. Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 degrees C, with activation energy (Ea) values of 13-15 kcal/mol above this temperature and 30-35 kcal below it. A further discontinuity was also found at 8.0 degrees C and the Ea below this was very high (greater than 100 kcal/mol). Increased Mg2+ concentrations at Mg2+:ATP ratios in excess of 1:1 inhibited the (Na+ +K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots. The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na+ +K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20 degrees C and Ea values of 22 and 68 kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 degrees C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km values for ATP. Since both cholesterol and Mg2+ are known to alter the effects of temperature on the fluidity of phospholipids, the above results are discussed in this context.  相似文献   

2.
Temperature dependence of anion transport in the human red blood cell   总被引:2,自引:0,他引:2  
Arrhenius plots of chloride and bromide transport yield two regions with different activation energies (Ea). Below 15 or 25 degrees C (for Cl- and Br-, respectively), Ea is about 32.5 kcal/mol; above these temperatures, about 22.5 kcal/mol (Brahm, J. (1977) J. Gen. Physiol. 70, 283-306). For the temperature dependence of SO4(2-) transport up to 37 degrees C, no such break could be observed. We were able to show that the temperature coefficient for the rate of SO4(2-) transport is higher than that for the rate of denaturation of the band 3 protein (as measured by NMR) or the destruction of the permeability barrier in the red cell membrane. It was possible, therefore, to extend the range of flux measurements up to 60 degrees C and to show that, even for the slowly permeating SO4(2-) in the Arrhenius plot, there appears a break, which is located somewhere between 30 and 37 degrees C and where Ea changes from 32.5 to 24.1 kcal/mol. At the break, the turnover number is approx. 6.9 ions/band 3 per s. Using 35Cl- -NMR (Falke, Pace and Chan (1984) J. Biol. Chem. 259, 6472-6480), we also determined the temperature dependence of Cl- -binding. We found no significant change over the entire range from 0 to 57 degrees C, regardless of whether the measurements were performed in the absence or presence of competing SO4(2-). We conclude that the enthalpy changes associated with Cl- - or SO4(2-)-binding are negligible as compared to the Ea values observed. It was possible, therefore, to calculate the thermodynamic parameters defined by transition-state theory for the transition of the anion-loaded transport protein to the activated state for Cl-, Br- and SO4(2-) below and above the temperatures at which the breaks in the Arrhenius plots are seen. We found in both regions a high positive activation entropy, resulting in a low free enthalpy of activation. Thus the internal energy required for carrying the complex between anion and transport protein over the rate-limiting energy barrier is largely compensated for by an increase of randomness in the protein and/or its aqueous environment.  相似文献   

3.
The enzymatic properties of plasma membrane-bound Na+, K+-ATPase [EC 3.6.1.3], isolated with high specific activity and in good yield from pig thyroid cells, were examined. The enzyme activity required the presence of both Na+ and K+ at physiological concentrations; it exhibited high sensitivity to K+ and an absolute requirement for Na+. It showed highly specific requirement for Mg2+ and ATP. The apparent Km for ATP was 0.14 mM under the assay conditions. Arrhenius plots had a point of inflection at about 22 degrees C, activation energies being 24.2 kcal/mol at 5-22 degrees C and 19.0 kcal/mol at 22-40 degrees C. In addition to ouabain, the ATPase was strongly inhibited by fluoride and the SH-blocking reagent, PCMB. Iodide and TSH had no appreciable effect on the enzyme activity.  相似文献   

4.
Electromyography was used to determine the functional roles of the axial musculature in striped bass and bluefish at imposed swimming velocities. The lateral red muscle powers propulsive movements at all sustainable swimming speeds in both species. The amplitude and frequency of EMG's from the red muscle grade with increasing swimming velocity. The white muscle, forming the main mass of the myotome, is reserved for high-speed burst swimming above maximum sustainable speeds. The proportion of the myotome occupied by the red muscle at the level of the caudal peduncle is 10.9% and 18.6% for the striped bass and the bluefish respectively.  相似文献   

5.
The effects of acclimation of striped bass to cold (5 degrees C) and warm (25 degrees C) temperatures upon ultrastructural features of white axial skeletal muscle are quantified. Surface density of sarcoplasmic reticulum (SR) increased by almost 30%, and SR volume density increased by about 20% during cold acclimation. Proliferation of SR suggests an increase in available SR surface for re-sequestration of Ca2+ and a decrease in diffusion path length for Ca2+ during cold acclimation. Average cross-sectional areas and cross-sectional perimeters of myofibrils situated in the center of muscle fibers decreased during cold acclimation by approximately 20% and 11%, respectively. Additionally, average major and minor axes of ellipses fit to central myofibrillar cross-sections decreased by approximately 12% and 8%, respectively, during cold acclimation. These measurements define a decrease in average myofibrillar diameter and suggest a decrease in diffusion path length for Ca2+ to and from myofibrillar activation sites. Measurements of peripheral myofibrils that had elongated profiles in cross-sections indicate that maximum profile length of these myofibrils decreases by about 17%. Peripheral myofibrils may break up into smaller myofibrils with more rounded cross-sectional profiles during cold acclimation. SR Ca2+-ATPase of white axial muscle was also measured in unfractionated homogenates and in crude SR-enriched subcellular fractions from cold- and warm-acclimated striped bass. No difference in SR Ca2+-ATPase activity per g wet weight was observed between cold- and warm-acclimated animals. Lack of increase in SR Ca2+-ATPase per g wet weight, despite a significant proliferation of SR, probably results in a decrease in average Ca2+-ATPase pump density within the SR membrane during cold acclimation. Thus, compensation for decreased diffusion coefficient of Ca2+ during cold acclimation appears due to the combined effects of proliferation of SR surface density and a decrease in average myofibrillar diameter.  相似文献   

6.
T P Pitner  J D Glickson 《Biochemistry》1975,14(14):3083-3087
Kinetics of internal rotation about the C(6)-N(6) bond of N-6,N-6-dimethyladenine (M2-6A) was investigated by -1H nuclear magnetic resonance line-shape analysis of the methyl resonances (220 MHz). Rates of rotation were determined for M2-6A deuterated at N(1) and for neutral M2-6A. Activation parameters for monodeuterated M2-6A at 22 degrees are Ea = 13.8kcal/mol, log A = 12.6, incrementG++=14.9 kcal/mol, incrementH++ = 13.1 kcal/mol, incrementS++ = minus 5.8 eu; for neutral M2-6A: Ea = 15.5 kcal/mol, log A = 14.9, incrementG++ = 12.6 kcal/mol, incrementH++ = 14.9 kcal/mol, incrementS++ =7.8 eu. Vertical stacking of bases interferes with internal rotation of the dimethylamino group.  相似文献   

7.
The Arrhenius plots for the membrane-bound ATPase and its soluble form purified from Micrococcus lysodeikticus, presented discontinuities near 30 degrees C at pH 7.5. Glycerol-containing lipids were not responsible for these discontinuities. The values of the enthalpies of activation were 12 (soluble) and 22 (membrane-bound) kcal/mol (50.2 and 92.0 kJ/mol) above 30 degrees C and 42 (soluble) and 29 (membrane-bound) kcal/mol (175.7 and 121.3 kJ/mol) below that temperature. The results suggested that both molecular forms of the ATPase were able to adopt at least two different structures, above and below the critical temperature. Of the two, only the high-temperature structure seemed to be enzymically active. In the case of lipid-dependent ATPases, such as the Escherichia coli enzyme, the transition between both enzyme structures probably occurred with simultaneous "melting" of their lipid microenvironment.  相似文献   

8.
Caldwell CR 《Plant physiology》1993,102(3):939-945
Triphenyl tetrazolium chloride (TTC) reduction by cucumber (Cucumis sativus L. cv Poinsett 76 and cv Ashley) leaf discs was used as a viability assay to examine the effect of temperature pretreatment on the tissue response to acute hyperthermia. Semi-logarithmic plots of TTC reduction as a function of incubation time at different temperatures from 40 to 60[deg]C resembled the heat survival curves of animal cells. Heat inactivation rates were obtained and subjected to "quasi" Arrhenius analyses by analytical methods derived from the animal studies. The Arrhenius plots of TTC reduction rates for cv Ashley leaf discs preincubated at 25 or 37[deg]C and for cv Poinsett 76 preincubated at 37[deg]C were linear with the same activation energy (Ea) of about 80 kcal mol-1. The Arrhenius plot of cv Poinsett 76 preincubated at 25[deg]C was nonlinear with an Ea of about 80 kcal mol-1 at temperatures below 46[deg]C and an Ea of about 27.5 kcal mol-1 at temperatures above 47[deg]C. The significance of these differences is discussed in terms of the role of protein denaturation in the thermal sensitivity of cucumber disc reduction of TTC and the applicability of these methods to the analysis of plant cellular heat sensitivity.  相似文献   

9.
The effect of single and combined heat treatments on the activity of DNA polymerase beta was studied in CHO cells. The activity of polymerase beta was determined by measuring the amount of [3H]TTP incorporated into activated calf thymus DNA in the presence of aphidicolin, a specific inhibitor of DNA polymerase alpha. Biphasic response curves were obtained for all temperatures tested (40-46 degrees C) showing the sensitivity to decrease during heating. A constant activation energy of Ea = 120 +/- 10 kcal/mole was found for the initial heat sensitivity, whereas the Arrhenius plot for the final sensitivity is characterized by an inflection point at 43 degrees C with Ea = 360 +/- 40 kcal/mole or Ea = 130 +/- 20 kcal/mole for temperatures below or above 43 degrees C, respectively. The observed decrease of the polymerase activity is not due to a decrease in the number of active enzyme molecules but to a change in its affinity, since the inhibition is reversible when increasing concentrations of TTP are applied. When acute or chronic thermo-tolerance was induced by a priming heat treatment at 43 degrees C for 45 min followed by a time interval at 37 degrees C for 16 h or by a preincubation at 40 degrees C for 16 h, respectively, the thermal sensitivity of polymerase beta was lowered by a factor of up to 5. By contrast, pretreatment at a higher temperature followed by a lower temperature (step-down heating) did not alter the sensitivity of polymerase beta to the second treatment. The results indicate that heat-induced cell death cannot be the consequence of the reduction of the polymerase beta activity, confirming earlier studies on this subject.  相似文献   

10.
Skeletal muscle sarcolemma (SL), transverse tubule (TT) and heavy sarcoplasmic reticulum (HSR) membranes were isolated from malignant hyperthermia susceptible (MHS) and normal pigs, and the rotational dynamics of lipid hydrocarbon chain motion was examined by electron paramagnetic resonance (EPR) spectroscopy. The stearic acid spin probe 16-SASL was incorporated into MHS and normal membranes and both the order parameter (S) and effective correlation time (tau r) of probe motion were calculated from spectra recorded over the temperature range of 2 to 40 degrees C. At any given temperature, TT membranes exhibited significantly greater values for both the S and tau r of probe motion than did SL, which exhibited significantly greater values than did HSR membranes. The order of decreasing S and tau r values for 16-SASL mobility correlated with the decreasing cholesterol content of these membranes (TT greater than SL greater than HSR), however there was no difference in the S or tau r values for a given membrane fraction isolated from both MHS and normal muscle. Arrhenius plots of 16-SASL mobility in SL, TT and HSR were linear from 2 to 40 degrees C, indicating no abrupt thermotropic change in the lipid hydrocarbon phase of any of the membrane types studied. Apparent activation energies (Ea), calculated from the Arrhenius plots, were similar for MHS and normal membranes derived from a given cellular location. However, the Ea of probe motion for TT membranes (2.3 +/- 0.1 and 2.4 +/- 0.1 kcal/mol/degree for MHS and normal, respectively) was significantly less than for SL (3.4 +/- 0.4 and 2.9 +/- 0.1 kcal/mol/degree for MHS and normal, respectively) which, in turn, was significantly less than the Ea for HSR (3.7 +/- 0.1 and 3.7 +/- 0.1 kcal/mol/degree for MHS and normal, respectively). Since 16-SASL motion was similar in MHS and normal membranes, we conclude that there is no evidence for a generalized membrane defect affecting lipid mobility in these MHS muscle membranes.  相似文献   

11.
We obtained the temperature dependences of the adenosine triphosphatase (ATPase) activities (calcium-activated and relaxed) of myofibrils from a slow muscle, which we compared with those from a fast muscle. We chose rabbit soleus and psoas because their myosin heavy chains are almost pure: isoforms I and IIX, respectively. The Arrhenius plots of the ATPases are linear (4-35 degrees C) with energies of activation for soleus myofibrils 155 kJ mol(-1) (activated) and 78 kJ mol(-1) (relaxed). With psoas myofibrils, the energies of activation were 71 kJ mol(-1) (activated) and 60 kJ mol(-1) (relaxed). When extrapolated to 42 degrees C the ATPase rates of the two types of myofibril were identical: 50 s(-1) (activated) and 0.23 s(-1) (relaxed). Whereas with psoas myofibrils the K(m) for adenosine triphosphate (activated ATPase) is relatively insensitive to temperature, that for soleus myofibrils increased from 0.3 microM at 4 degrees C to 66.5 microM at 35 degrees C. Our results illustrate the importance of temperature when comparing the mechanochemical coupling in different types of muscle. We discuss the problem of how to reconcile the similarity of the myofibrillar ATPase rates at physiological temperatures with their different mechanical properties.  相似文献   

12.
The histochemical activity of adenosine triphosphatase (ATPase) was studied at light and electron microscopic levels in larval tail musculature of Rana catesbeiana and Rana ornativentris during late metamorphic stages. The presence of low, moderate or dark reaction of K2-EDTA-preincubated Ca++-ATPase was correlated with the variable degree of degeneration of white fibres even at the late stage of tail resorption. The reasons for an increase in this ATPase activity in degenerating white muscle fibres are discussed. Irrespective of the degree of degeneration, all red fibres showed high ATPase reaction. During myocytolysis, it is shown that the SR vesicles accumulate electron dense amorphous material. The degree of myofibrillar disintegration correlated with decrease in ultrastructural reaction product for Mg++-ATPase. Although grouped atrophy of muscle fibres (as seen in Xenopus laevis, den Hartog Jager et al., 1973, 1975) was absent in musculature of resorptive tails, ultrastructural characteristics including proliferation of SR and dilation of its vesicles represent alteration of the normal neural influence on the skeletal muscle fibres.  相似文献   

13.
The initial rate of [14C]uridine transport by guinea pig erythrocytes was investigated at different temperatures. At 37, 22, and 10 degrees C the concentration dependence of uridine zero-trans influx and equilibrium exchange influx was resolved into two components; (a) a saturable component which followed simple Michaelis-Menten kinetics and which was inhibited by nitrobenzylthioinosine, and (b) a linear component of low magnitude and insensitive to nitrobenzylthioinosine inhibition. The maximum velocity, Vmax, of zero-trans uridine influx for the saturable transport system was 70-fold higher at 37 than 10 degrees C (1.24, 0.20, and 0.018 mmol/L of cells per hour at 37, 22, and 10 degrees C, respectively). Similarly, the apparent affinity, Km, for zero-trans influx decreased as the temperature was lowered (0.27, 0.066, and 0.038 mM at 37, 22, and 10 degrees C, respectively). In contrast, uridine equilibrium exchange influx was less temperature dependent (Vmax, 2.80, 0.89, and 0.14 mmol/L of cells per hour; apparent Km 0.61, 0.36, and 0.24 mM at 37, 22, and 10 degrees C, respectively). These results demonstrate that the mobility of the empty carrier is impaired to a greater extent than the mobility of the loaded carrier temperature decreased. However, the kinetic constants for zero-trans uridine influx and efflux at 37 degrees C were similar, indicating that the nucleoside transporter exhibited directional symmetry at 37 degrees C. Arrhenius plots of the maximum velocity for equilibrium exchange and zero-trans uridine influx were discontinuous above 25 degrees C, but between 20 and 5 degrees C the plots were linear (Ea = 22 and 30 kcal/mol for equilibrium exchange and zero-trans influx, respectively.  相似文献   

14.
The temperature dependence and effects of sodium and potassium chloride on purified preparations of sarcolemmal Ca2+-activated ATPase were investigated. It was shown that within the concentration range of 0,1--1,0 M both salts have the same effect on the enzyme activity. A low ionic strength and concentration of the salts of 0,1 M the temperature maximum was 45 degrees and the shapes of temperature curves were the same. The Arrhenius plots showed a break at 16--19 degrees. The apparent activation energies were 27,3 kcal/mole below and 17,1 kcal/mole above the break point. At high ionic strength (0,5 M) the temperature maximum was observed at 40 degrees and the apparent activation energies decreased down to 18,0 kcal/mole below and 11,5 kcal/mole above the break point.  相似文献   

15.
Using the patch-clamp method temperature dependences of the chord conductance of single potential--dependent slow and fast K+ channels in mollusk neurons were studied. Under control conditions (20 degrees C, 0 mV, [K+]o = 1.5 mM and [K+]i = 100 mM) the conductances of the fast and slow K+ channels were equal to 20-25 pS and 30-40 pS, respectively. Besides, the temperature dependences of the currents through the K+ channels of lesser conductance (5-20 pS) were studied. Some of these channels may be regarded as subtypes of the fast and slow K+ channels named above. It was found that for the channels of all types single channel currents arise with temperature. However, in the range of 10-20 degrees C an anomalous conductance decrease at temperature elevation was observed. For all channels except for the fast one at temperatures above 20 degrees C activation energy (delta Ea) calculated from the Arrhenius plots of the currents was about 4 kcal/mol. At the temperatures below 10 degrees C delta Ea was equal to about 12 kcal/mol. In this temperature range delta Ea had a pronounced potential dependency. Temperature dependences of the fast K+ channel conductance were opposite to those of the slow K+ channel to some extent.  相似文献   

16.
The effect of temperature on the activation energies of mitochondrial enzymes of the yeast Saccharomyces cerevisiae was examined. Non-linear Arrhenius plots with discontinuities in the temperature range 14-19 degrees C and 19-22 degrees C were observed for the respiratory enzymes and mitochondrial ATPase (adenosine triphosphatase) respectively. A straight-line Arrhenius plot was observed for the matrix enzyme, malate dehydrogenase. The activation energies of the enzymes associated with succinate oxidation, namely, succinate oxidase, succinate dehydrogenase and succinate-cytochrome c oxidoreductase, were in the range 60-85kJ/mol above the transition temperature and 90-160kJ/mol below the transition temperature. In contrast, the corresponding enzymes associated with NADH oxidation showed significantly lower activation energies, 20-35kJ/mol above and 40-85kJ/mol below the transition temperature. The discontinuities in the Arrhenius plots were still observed after sonication, treatment with non-ionic detergents or freezing and thawing of the mitochondrial membranes. Discontinuities for cytochrome c oxidase activity were only observed in freshly isolated mitochondria, and no distinct breaks were observed after storage at -20 degrees C. Mitochondrial ATPase activity still showed discontinuities after sonication and freezing and thawing, but a linear plot was observed after treatment with non-ionic detergents. The results indicate that the various enzymes of the respiratory chain are located in a similar lipid macroenvironment within the mitochondrial membrane.  相似文献   

17.
Common carp (Cyprinus carpio L.) were reared from hatching until 61 mm total length (TL) at 21 degrees C. At 14 weeks and 20 weeks post-hatch, corresponding to initial lengths of 30 mm and 44 mm respectively, fish were acclimated to 10 degrees C using a rate of cooling of 1 degrees C per day. A statistical model was used to compare the time course in the change of white muscle myofibrillar ATPase activity with temperature acclimation. The myosin heavy chain (MHC) composition of white muscle myofibrils was investigated using peptide mapping. A significant increase in myofibrillar ATPase activity was observed after 2-3 weeks in the 44 mm group, but not until 4-5 weeks in the 30 mm group. when they had reached 37 mm TL. The MHC banding pattern of 120 mm TL fish acclimated to 10 degrees C or 21 degrees C for a minimum of 6 weeks were distinct from each other. The MHC peptide map characteristic of 10-degrees C-acclimated fish was not observed in individuals less than 37 mm length. We therefore conclude that the capacity to alter the composition and properties of myofibrils with cold acclimation is acquired in juvenile carp at around 37 mm TL.  相似文献   

18.
Striated muscle contraction is initiated when troponin C (TnC) binds Ca(2+), which activates actinomyosin ATPase. We investigated (i) the variation between cardiac TnC (cTnC) primary structure within teleost fish and (ii) the pattern of TnC expression in response to temperature acclimation. There were few differences between rainbow trout (Oncorhynchus mykiss), yellowfin tuna (Thunnus albacares), yellow perch (Perca flavescens), goldfish (Carassius auratus), white sucker (Catostomus commersoni), and icefish (Chaenocephalus aceratus) in cTnC amino acid sequence. No variation existed in the regulatory Ca(2+)-binding site (site 2). The site 3 and 4 substitutions were limited to residues not directly involved in Ca(2+) coordination. Fish cTnC primary structure was highly conserved between species (93%-98%) and collectively divergent from the highly conserved sequence seen in birds and mammals. Northern blots and polymerase chain reaction showed that thermal acclimation of trout (3 degrees, 18 degrees C) did not alter the TnC isoform pattern. While cardiac and white muscle had the expected isoforms-cTnC and fast troponin C (fTnC), respectively-red muscle unexpectedly expressed primarily ftnC. Cold acclimation did not alter myofibrillar ATPase Ca(2+) sensitivity, but maximal velocity increased by 60%. We found no evidence that TnC variants, arising between species or in response to thermal acclimation, play a major role in mitigating the effects of temperature on contractility of the adult fish heart.  相似文献   

19.
Arrhenius plots of succinate oxidase activity in intact beef heart mitochondria show a clear transition from a low to a high activation energy at 27°C. This temperature is significantly higher than that observed for ATPase (17°C). Arrhenius plots of succinate-cytochromec reductase and cytochromec oxidase also show anomalous curves; while the latter has a breakpoint (at 26°C) only when assayed manometrically, the former has a break at only 20°C.The succinoxidase activity of lipid-deficient mitochondria depends upon addition of exogenous phospholipids. Unsaturated phospholipids are more active than saturated phospholipids but the latter become very effective in restoration of succinoxidase at increasing temperatures. It is suggested that a liquid-crystalline state of the phospholipids is required for correct binding to the lipid-depleted membrane and for restoration of respiratory activity. The is no clear correlation between the above mentioned effects in lipid deficient mitochondria and the transitions in the Arrhenius plots of intact mitochondria.  相似文献   

20.
Hepatic plasma membrane lipids of lean (+/?) and obese (ob/ob) mice have been investigated using 1,6-diphenylhexatriene (DPH). Arrhenius plots of DPH fluorescence polarization in membranes showed the breakpoint in obese mice was reduced from 21 to 15 degrees C, whereas the breakpoint of 5'-nucleotidase activity was raised from 23 to 32 degrees C. Arrhenius break temperatures of DPH polarization and 5'-nucleotidase activity responded differently to housing mice at 34 degrees C and triiodothyronine (T3) treatment. Studies of DPH polarization in liposomes and phospholipid fatty acid composition suggested that differences in sphingomyelin acyl composition determine Arrhenius characteristics of hepatic 5'-nucleotidase in lean and obese mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号