首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

2.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3′ end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3′ untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

3.
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root.  相似文献   

4.
Summary The wild-type line and 14 nitrate reductase-deficient mutant cell lines of Nicotiana tabacum were tested for the presence of nitrate reductase partial activities, and for nitrite reductase and xanthine dehydrogenase activity. Data characterizing the electron donor specificity of nitrate reductase (EC 1.6.6.1., NADH:nitrate oxidoreductase) and nitrite reductase (EC 1.7.7.1., ferredoxin:nitrite oxidoreductase) of the wild-type line are presented. Three lines (designated cnx) simultaneously lack NADH-, FADH2-, red. benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are, therefore, interpreted to be impaired in gene functions essential for the synthesis of an active molybdenum-containing cofactor. For cnx-68 and cnx-101, the sedimentation coefficient of the defective nitrate reductase molecules does not differ from that of the wild-type enzyme (7.6S). In 11 lines (designated nia) xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities, including NADH-cytochrome c reductase. However, one line (nia-95) was found to possess a partially active nitrate reductase molecule, retaining its FADH2- and red. benzyl viologen nitrate reductase activity. It is likely that nia-95 is a mutation in the structural gene for the apoprotein. Both, the nia and cnx mutant lines exhibit nitrite reductase activity, being either nitrate-inducible or constitutive. Evidence is presented that, in Nicotiana tabacum, nitrate, without being reduced to nitrite, is an inducer of the nitrate assimilation pathway.  相似文献   

5.
Nitrite reductase (ferredoxin:nitrite oxidoreductase, EC 1.6.6.1) carries out the six-electron reduction of nitrite to ammonium ions in the chloroplasts/plastids of higher plants. The complete or partial nucleotide sequences of a number of nitrite reductase apoprotein genes or cDNAs have been determined. Deduced amino acid sequence comparisons have identified conserved regions, one of which probably is involved in binding the sirohaem/4Fe4S centre and another in binding the electron donor, reduced ferredoxin. The nitrite reductase apoprotein is encoded by the nuclear DNA and is synthesised as a precursor carrying an N-terminal extension, the transit peptide, which acts to target the protein to, and within, the chloroplast/plastid. In those plants examined the number of nitrite reductase apoprotein genes per haploid genome ranges from one (barley, spinach) to four ( Nicotiana tabacum ). Mutants defective in the nitrite reductase apoprotein gene have been isolated in barley. During plastidogenesis in etiolated plants, synthesis of nitrite reductase is regulated by nitrate, light (phytochrome), and an uncharacterised 'plastidic factor' produced by functional chloroplasts. In leaves of green, white-light-grown plants up-regulation of nitrite reductase synthesis is achieved via nitrate and light and down-regulation by a nitrogenous end-product of nitrate assimilation, perhaps glutamine. A role for phytochrome has not been demonstrated in green, light-grown plants. Light regulation of nitrite reductase genes is related more closely to that of photosynthetic genes than to the nitrate reductase gene. In roots of green, white-light-grown plants nitrate alone is able to bring about synthesis of nitrite reductase, suggesting that the root may possess a mechanism that compensates for the light requirement seen in the leaf.  相似文献   

6.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

7.
T. Borner  R. R. Mendel  J. Schiemann 《Planta》1986,169(2):202-207
The activities of nitrite reductase (EC 1.7.7.1) are 60–70% of wild-type activity in pigment-deficient leaves of the chloroplast-ribosomedeficient mutants albostrians (Hordeum vulgare) and iojap (Zea mays). The activity and apoprotein of nitrate reductase (EC 1.6.6.1.) are lacking in the barley mutant. Only very low activities of nitrate reductase can be extracted from leaves of the maize mutant. The molybdenum cofactor of nitrate reductase and xanthine dehydrogenase (EC 1.2.3.2) is present in maize and barley mutant plants. However, it is not inducible by nitrate in pigment-deficient leaves of albostrians. From these results we conclude: (i) Nitrite reductase (a chloroplast enzyme) is synthesized in the cytoplasm and does not need the presence of nitrate reductase for the induction and maintenance if its activity. (ii) The loss or low activity of nitrate reductase is a consequence of the inability of the mutants to accumulate the apoprotein of this enzyme. (iii) The chloroplasts influence the accumulation (i.e. most probably the synthesis) of the nonchloroplast enzyme, nitrate reductase. The accumulation of nitrate reductase needs a chloroplast factor which is not provided by mutant plastids blocked at an early stage of their development.Abbreviations CRM cross-reacting material - Mo-co molybdenum cofactor - NiR nitrite reductase - NR nitrate reductase  相似文献   

8.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

9.
This work reports the isolation and preliminary characterization ofNicotiana plumbaginifolia mutants resistant to methylammonium.Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up byNicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.  相似文献   

10.
Two nitrate reductase (NaR)-deficient mutants of pea (Pisum sativum L.), E1 and A300, both disturbed in the molybdenum cofactor function and isolated, respectively, from cv Rondo and cv Juneau, were tested for allelism and were compared in biochemical and growth characteristics. The F1 plants of the cross E1 × A300 possessed NaR and xanthine dehydrogenase (XDH) activities comparable to those of the wild types, indicating that these mutants belong to different complementation groups, representing two different loci. Therefore, mutant E1 represents, besides mutant A300 and the allelic mutants A317 and A334, a third locus governing NaR and is assigned the gene destignation nar 3. In comparison with the wild types, cytochrome c reductase activity was increased in both mutants. The mutants had different cytochrome c reductase distribution patterns, indicating that mutant A300 could be disturbed in the ability to dimerize NaR apoprotein monomers, and mutant E1 in the catalytic function of the molybdenum cofactor. In growth characteristics studied, A300 did not differ from the wild types, whereas fully grown leaves of mutant E1 became necrotic in soil and in liquid media containing nitrate.  相似文献   

11.
A new allele, SC148, of thesulfurea locus inLycopersicon esculentum was detected in a line derived after repeated selfing of plants that had been regenerated from tissue culture. Like the originalsulf mutant, SC148 displayed two mutant phenotypes: green-yellow speckled plants in which thesulf vag allele is present and pure yellow plants homozygous for thesulf tpura allele. Although the mutant alleles are recessive to wild-type, an unpredictable number of variegated and pura plants appeared in F1 progenies that had been derived from crosses between SC148 and wild-type tomato plants. The presence of the wild-typesulf + allele in these variegated heterozygotes was demonstrated using a cytological marker that is linked tosulf. It is concluded that the mutantsulf allele of SC148, imposes its variegated expression state on the wild-typesulf + allele present insulf +/sulfvag heterozygotes. This behaviour, known as paramutation, has also been described for the originalsulf allele. The SC148 allele, however, seems to induce changes at an earlier stage in development. The analogy of this paramutagenic system to dominant position effect variegation inDrosophila is discussed.  相似文献   

12.
Ammonia-incubated cyanobacteria liberated H2O2, accumulated hydroxylamine compounds and nitrite and catalyzed dismutation of hydroxylamine as well as oxidations of ammonia, glutamine, and oximes. Ethyl acetohydroximate-adapted Phormidium released excess H2O2 and phototrophically metabolized the oxime via hydrolysis and dismutation to nitrite and ammonia, which were consumed by nitrite reductase and glutamine synthetase. Added ammonia stimulated H2O2 production and oxime metabolism via glutamate dehydrogenase pathway.Abbreviations EAH Ethyl acetohydroximate - GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase  相似文献   

13.
Manipulation of the CO2 concentration of the atmosphere allows the selection of photorespiratory mutants from populations of seeds treated with powerful mutagens such as sodium azide. So far, barley lines deficient in activity of phosphoglycolate phosphatase, catalase, the glycine to serine conversion, glutamine synthetase, glutamate synthase, 2-oxoglutarate uptake and serine: glyoxylate aminotransferase have been isolated. In addition one line of pea lacking glutamate synthase activity and one barley line containing reduced levels of Rubisco are available. The characteristics of these mutations are described and compared with similar mutants isolated from populations of Arabidopsis. As yet, no mutant lacking glutamine synthetase activity has been isolated from Arabidopsis and possible reasons for this difference between barley and Arabidopsis are discussed. The value of these mutant plants in the elucidation of the mechanism of photorespiration and its relationships with CO2 fixation and amino acid metabolism are highlighted.Abbreviations GS cytoplasmic glutamine synthetase - GS2 chloroplastic glutamine synthetase - PFR Photon fluence rate - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SGAT serine:glyoxylate aminotransferase  相似文献   

14.
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2-NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2-NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 and HCO3, compared with inducible NR from NO3-grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity.  相似文献   

15.
A. Suzuki  P. Gadal  A. Oaks 《Planta》1981,151(5):457-461
The cellular distribution of enzymes involved in nitrogen assimilation: nitrate reductase (EC 1.6.6.2), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) has been studied in the roots of five plants: maize (Zea mays L. hybrid W 64A x W 182E), rice (Oryza sativa L. cv. Delta), bean (Phaseolus vulgaris L. cv. Contender), pea (Pisum sativum L. cv. Demi-nain), and barley (Hordeum vulgare L.). Initially, cell organelles were separated from soluble proteins by differential centrifugation. Cell organelles were also subjected to sucrose density gradients. The results obtained by these two methods indicate that nitrite reductase and glutamate synthase are localized in plastids, nitrate reductase and glutamine synthetase are present in the cytosol, and glutamate dehydrogenase is a mitochondrial enzyme.  相似文献   

16.
Batch cultures of Chlorella fusca excreted nitrite into the medium if gassed with air (0.03% CO2), but they did not if supplied with air containing 5% CO2. After a change from high to low CO2 concentration in the gas stream, nitrite excretion started immediately. After an increase in CO2 concentration to 5%, nitrite uptake started within only 30 min. Changes of in-vitro activities of nitrate reductase, nitrite reductase and glutamine synthetase did not correspond to changes of nitrite concentration in the medium and therefore could not explain these observations. A nitrite-binding site, whose activity corresponded with both nitrite excretion and uptake, was detected at the chloroplast envelope. From these data an additional regulatory step in the assimilatory nitrate-reduction sequence is suggested. This includes an envelopeprotein fraction probably regulating the availability of nitrite within the chloroplast.Abbreviations FMN riboflavin 5-phosphate - GS glutamine synthetase - NIR nitrite reductase - NR nitrate reductase  相似文献   

17.
Silencing ofNia host genes and transgenes (encoding nitrate reductase) was previously achieved by introducing into tobacco plants the tobaccoNia2 cDNA cloned downstream of the cauliflower mosaic virus (CaMV) 35S promoter. To check whetherNii host genes and transgenes (encoding nitrite reductase, the second enzyme of the nitrate assimilation pathway) were also susceptible to silencing, a transgene consisting of the tobaccoNii1 gene with two copies of the enhancer of the 35S promoter cloned 1 kb upstream of theNii promoter region was introduced into tobacco plants. Among nine independent transformants analysed, two showed silencing ofNii host genes and transgenes in some descendants after selfing, but never after back-crossing with wild-type plants, suggesting that silencing depends on the number of transgene loci and/or on certain allelic or ectopic combinations of transgene loci. In one transformant carrying a single transgene locus in a homozygous state, silencing was triggered in all progeny plants of each generation, 20 to 50 days after germination. Field trial analysis confirmed that silencing was not triggered when the transgene locus of this latter line was present in a hemizygous state. In addition, it was revealed that silencing can be triggered, albeit at low frequency and later during the development, when this transgene locus is brought into the presence of a non-allelic transgene locus by crossing, suggesting that a homozygous state is not absolutely required.  相似文献   

18.
In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities.  相似文献   

19.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.  相似文献   

20.
Using a two-component Ac/Ds system consisting of a stabilized Ac element (Acc1) and a non-autonomous element (DsA), 650 families of plants carrying independent germinal DsA excisions/transpositions were isolated. Progenies of 559 of these Acc1/DsA families, together with 43 families of plants selected for excision/transposition of wild-type (wt)Ac, were subjected to a broad screening program for mutants exhibiting visible alterations. This resulted in the identification of 48 mutants showing a wide variety of mutant phenotypes, including embryo lethality (24 mutants), chlorophyll defects (5 mutants), defective seedlings (2 mutants), reduced fertility (5 mutants), reduced size (3 mutants), altered leaf morphology (2 mutants), dark green, unexpanded rosette leaves (3 mutants), and aberrant flower or shoot morphology (4 mutants). To test whether these mutants were due to transposon insertions, a series of Southern blot experiments was performed on 28 families, comparing in each case several mutant plants with others showing the wild-type phenotype. A preliminary analysis revealed in 4 of the 28 families analyzed a common, novel DsA fragment in all mutant plants, which was present only in heterozygous plants with wt phenotype, as expected for DsA insertion mutations. These four mutants included two showing embryo lethality, one with dark green, unexpanded rosette leaves and stunted inflorescences, and one with curly growth of stems, leaves and siliques. Further evidence for DsA insertion mutations was obtained for one embryo lethal mutant and for the stunted mutant, while in case of the second embryo lethal mutant, the DsA insertion could be separated from the mutant locus by genetic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号