共查询到20条相似文献,搜索用时 0 毫秒
1.
B. B. Kragelund B. Heinemann J. Knudsen F. M. Poulsen 《Protein science : a publication of the Protein Society》1998,7(11):2237-2248
The rate constants for the processes that lead to local opening and closing of the structures around hydrogen bonds in native proteins have been determined for most of the secondary structure hydrogen bonds in the four-helix protein acyl coenzyme A binding protein. In an analysis that combines these results with the energies of activation of the opening processes and the stability of the local structures, three groups of residues in the protein structure have been identified. In one group, the structures around the hydrogen bonds have frequent openings, every 600 to 1,500 s, and long lifetimes in the open state, around 1 s. In another group of local structures, the local opening is a very rare event that takes place only every 15 to 60 h. For these the lifetime in the open state is also around 1 s. The majority of local structures have lifetimes between 2,000 and 20,000 s and relatively short lifetimes of the open state in the range between 30 and 400 ms. Mapping of these groups of amides to the tertiary structure shows that the openings of the local structures are not cooperative at native conditions, and they rarely if ever lead to global unfolding. The results suggest a mechanism of hydrogen exchange by progressive local openings. 相似文献
2.
The ability to determine conformational parameters of protein-folding landscapes is critical for understanding the link between conformation, function, and disease. Monitoring hydrogen exchange (HX) of labile protons at equilibrium enables direct extraction of thermodynamic or kinetic landscape parameters in two limiting extremes. Here, we establish a quantitative framework for relating HX behavior to landscape. We use this framework to demonstrate that the range of predicted global HX behavior for the majority of a set of characterized two-state proteins under near-native conditions does not readily span between both extremes. For most, stability may be quantitatively determined under physiological conditions, with semiquantitative boundaries on kinetics additionally determined using modest experimental perturbations to shift HX behavior. The framework and relationships derived in the simple context of two-state global folding highlight the importance of understanding HX across the entire continuum of behavior, in order to apply HX to map landscapes. 相似文献
3.
Two-state vs. multistate protein unfolding studied by optical melting and hydrogen exchange 下载免费PDF全文
A direct conflict between the stabilization free energy parameters of cytochrome c determined by optical methods and by hydrogen exchange (HX) is quantitatively explained when the partially folded intermediates seen by HX are taken into account. The results support the previous HX measurements of intermediate populations, show how intermediates can elude the standard melting analysis, and illustrate how they confuse the analysis when they are significantly populated within the melting transition region. 相似文献
4.
Early intermediates in the folding of dihydrofolate reductase from Escherichia coli detected by hydrogen exchange and NMR. 下载免费PDF全文
B. E. Jones C. R. Matthews 《Protein science : a publication of the Protein Society》1995,4(2):167-177
The kinetic folding mechanism for Escherichia coli dihydrofolate reductase postulates two distinct types of transient intermediates. The first forms within 5 ms and has substantial secondary structure but little stability. The second is a set of four species that appear over the course of several hundred milliseconds and have secondary structure, specific tertiary structure, and significant stability (Jennings PA, Finn BE, Jones BE, Matthews CR, 1993, Biochemistry 32:3783-3789). Pulse labeling hydrogen exchange experiments were performed to determine the specific amide hydrogens in alpha-helices and beta-strands that become protected from exchange through the formation of stable hydrogen bonds during this time period. A significant degree of protection was observed for two subsets of the amide hydrogens within the dead time of this experiment (6 ms). The side chains of one subset form a continuous nonpolar strip linking six of the eight strands in the beta-sheet. The other subset corresponds to a nonpolar cluster on the opposite face of the sheet and links three of the strands and two alpha-helices. Taken together, these data demonstrate that the complex strand topology of this eight-stranded sheet can be formed correctly within 6 ms. Measurement of the protection factors at three different folding times (13 ms, 141 ms, and 500 ms) indicates that, of the 13 amide hydrogens displaying significant protection within 6 ms, 8 exhibit an increase in their protection factors from approximately 5 to approximately 50 over this time range; the remaining five exhibit protection factors > 100 at 13 ms. Only approximately half of the population of molecules form this set of stable hydrogen bonds. Thirteen additional hydrogens in the beta-sheet become protected from exchange as the set of native conformers appear, suggesting that the stabilization of this network reflects the global cooperativity of the folding reaction. 相似文献
5.
6.
Saeko Yanaka Maho YagiUtsumi Koichi Kato Kunihiro Kuwajima 《Protein science : a publication of the Protein Society》2023,32(3)
The characterization of residual structures persistent in unfolded proteins is an important issue in studies of protein folding, because the residual structures present, if any, may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the residual structures of the isolated B domain (BDPA) of staphylococcal protein A in 6 M guanidinium chloride. BDPA is a small three‐helix‐bundle protein, and until recently its folding/unfolding reaction has been treated as a simple two‐state process between the native and the fully unfolded states. We employed a dimethylsulfoxide (DMSO)‐quenched hydrogen/deuterium (H/D)‐exchange 2D NMR techniques with the use of spin desalting columns, which allowed us to investigate the H/D‐exchange behavior of individually identified peptide amide (NH) protons. We obtained H/D‐exchange protection factors of the 21 NH protons that form an α‐helical hydrogen bond in the native structure, and the majority of these NH protons were significantly protected with a protection factor of 2.0–5.2 in 6 M guanidinium chloride, strongly suggesting that these weakly protected NH protons form much stronger hydrogen bonds under native folding conditions. The results can be used to deduce the structure of an early folding intermediate, when such an intermediate is shown by other methods. Among three native helical regions, the third helix in the C‐terminal side was highly protected and stabilized by side‐chain salt bridges, probably acting as the folding initiation site of BDPA. The present results are discussed in relation to previous experimental and computational findings on the folding mechanisms of BDPA. 相似文献
7.
P. M. Krishna Mohan Swagata Chakraborty Ramakrishna V. Hosur 《Journal of biomolecular NMR》2009,44(1):1-11
Understanding protein stability at residue level detail in the native state ensemble of a protein is crucial to understanding
its biological function. At the same time, deriving thermodynamic parameters using conventional spectroscopic and calorimetric
techniques remains a major challenge for some proteins due to protein aggregation and irreversibility of denaturation at higher
temperature values. In this regard, we describe here the NMR investigations on the conformational stabilities and related
thermodynamic parameters such as local unfolding enthalpies, heat capacities and transition midpoints in DLC8 dimer, by using
temperature dependent native state hydrogen exchange; this protein aggregates at high (>65°C) temperatures. The stability
(free energy) of the native state was found to vary substantially with temperature at every residue. Significant differences
were found in the thermodynamic parameters at individual residue sites indicating that the local environments in the protein
structure would respond differently to external perturbations; this reflects on plasticity differences in different regions
of the protein. Further, comparison of this data with similar data obtained from GdnHCl dependent native state hydrogen exchange
indicated many similarities at residue level, suggesting that local unfolding transitions may be similar in both the cases.
This has implications for the folding/unfolding mechanisms of the protein.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
8.
Investigating the relative importance of protein stability, function, and folding kinetics in driving protein evolution has long been hindered by the fact that we can only compare modern natural proteins, the products of the very process we seek to understand, to each other, with no external references or baselines. Through a large-scale all-atom simulation of protein evolution, we have created a large diverse alignment of SH3 domain sequences which have been selected only for native state stability, with no other influencing factors. Although the average pairwise identity between computationally evolved and natural sequences is only 17%, the residue frequency distributions of the computationally evolved sequences are similar to natural SH3 sequences at 86% of the positions in the domain, suggesting that optimization for the native state structure has dominated the evolution of natural SH3 domains. Additionally, the positions which play a consistent role in the transition state of three well-characterized SH3 domains (by phi-value analysis) are structurally optimized for the native state, and vice versa. Indeed, we see a specific and significant correlation between sequence optimization for native state stability and conservation of transition state structure. 相似文献
9.
Early formation of a beta hairpin during folding of staphylococcal nuclease H124L as detected by pulsed hydrogen exchange 下载免费PDF全文
William F. Walkenhorst Jason A. Edwards John L. Markley Heinrich Roder 《Protein science : a publication of the Protein Society》2002,11(1):82-91
Pulsed hydrogen exchange methods were used to follow the formation of structure during the refolding of acid-denatured staphylococcal nuclease containing a stabilizing Leu substitution at position 124 (H124L SNase). The protection of more than 60 backbone amide protons in uniformly (15)N-labeled H124L SNase was monitored as a function of refolding time by heteronuclear two-dimensional NMR spectroscopy. As found in previous studies of staphylococcal nuclease, partial protection was observed for a subset of amide protons even at the earliest folding time point (10 msec). Protection indicative of marginally stable hydrogen-bonded structure in an early folding intermediate was observed at over 30 amide positions located primarily in the beta-barrel and to a lesser degree in the alpha-helical domain of H124L SNase. To further characterize the folding intermediate, protection factors for individual amide sites were measured by varying the pH of the labeling pulse at a fixed refolding time of 16 msec. Protection factors >5.0 were observed only for amide positions in a beta-hairpin formed by strands 2 and 3 of the beta-barrel domain and a single site near the C-terminus. The results indicate that formation of stable hydrogen-bonded structure in a core region of the beta-sheet is among the earliest structural events in the folding of SNase and may serve as a nucleation site for further structure formation. 相似文献
10.
Apparent local stability of the secondary structure of Azotobacter vinelandii holoflavodoxin II as probed by hydrogen exchange: implications for redox potential regulation and flavodoxin folding. 下载免费PDF全文
E. Steensma M. J. Nijman Y. J. Bollen P. A. de Jager W. A. van den Berg W. M. van Dongen C. P. van Mierlo 《Protein science : a publication of the Protein Society》1998,7(2):306-317
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y. 相似文献
11.
Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR. 下载免费PDF全文
E. W. Chung E. J. Nettleton C. J. Morgan M. Gross A. Miranker S. E. Radford C. M. Dobson C. V. Robinson 《Protein science : a publication of the Protein Society》1997,6(6):1316-1324
The extent of deuterium labeling of hen lysozyme, its three-disulfide derivative, and the homologous alpha-lactalbumins, has been measured by both mass spectrometry and NMR. Different conformational states of the proteins were produced by varying the solution conditions. Alternate protein conformers were found to contain different numbers of 2H atoms. Furthermore, measurement in the gas phase of the mass spectrometer or directly in solution by NMR gave consistent results. The unique ability of mass spectrometry to distinguish distributions of 2H atoms in protein molecules is exemplified using samples prepared to contain different populations of 2H-labeled protein. A comparison of the peak widths of bovine alpha-lactalbumin in alternate solution conformations but containing the same average number of 2H atoms showed dramatic differences due to different 2H distributions in the two protein conformers. Measurement of 2H distributions by ESI-MS enabled characterization of conformational averaging and structural heterogeneity. In addition, a time course for hydrogen exchange was examined and the variation in distributions of 2H atom compared with simulations for different hydrogen exchange models. The results clearly show that exchange from the native state of bovine alpha-lactalbumin at 15 degrees C is dominated by local unfolding events. 相似文献
12.
Rojsajjakul T Wintrode P Vadrevu R Robert Matthews C Smith DL 《Journal of molecular biology》2004,341(1):241-253
The urea-induced unfolding of the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, an eight-stranded (beta/alpha)(8) TIM barrel protein, has been shown to involve two stable equilibrium intermediates, I1 and I2, well populated at approximately 3 M and 5 M urea, respectively. The characterization of the I1 intermediate by circular dichroism (CD) spectroscopy has shown that I1 retains a significant fraction of the native ellipticity; the far-UV CD signal for the I2 species closely resembles that of the fully unfolded form. To obtain detailed insight into the disruption of secondary structure in the urea-induced unfolding process, a hydrogen exchange-mass spectrometry study was performed on alphaTS. The full-length protein was destabilized in increasing concentration of urea, the amide hydrogen atoms were pulse-labeled with deuterium, the labeled samples were quenched in acid and the products were analyzed by electrospray ionization mass spectrometry. Consistent with the CD results, the I1 intermediate protects up to approximately 129 amide hydrogen atoms against exchange while the I2 intermediate offers no protection. Electrospray ionization mass spectrometry analysis of the peptic fragments derived from alphaTS labeled at 3 M urea indicates that most of the region between residues 12-130, which constitutes the first four beta strands and three alpha helices, (beta/alpha)(1-3)beta(4), is structured. The (beta/alpha)(1-3)beta(4) module appears to represent the minimum sub-core of stability of the I1 intermediate. A 4+2+2 folding model is proposed as a likely alternative to the earlier 6+2 folding mechanism for alphaTS. 相似文献
13.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains. 相似文献
14.
Amide proton exchange measurements as a probe of the stability and dynamics of the N-terminal domain of the ribosomal protein L9: comparison with the intact protein. 下载免费PDF全文
L. Vugmeyster B. Kuhlman D. P. Raleigh 《Protein science : a publication of the Protein Society》1998,7(9):1994-1997
Amide H/D exchange rates have been measured for the N-terminal domain of the ribosomal protein L9, residues 1-56. The rates were measured at pD 3.91, 5.03, and 5.37. At pD 5.37, 18 amides exchange slowly enough to give reliable rate measurements. At pD 3.91, seven additional residues could be followed. The exchange is shown to occur by the EX2 mechanism for all conditions studied. The rates for the N-terminal domain are very similar to those previously measured for the corresponding region in the full-length protein (Lillemoen J et al., 1997, J Mol Biol 268:482-493). In particular, the rates for the residues that we have shown to exchange via global unfolding in the N-terminal domain agree within the experimental error with the rates measured by Hoffman and coworkers, suggesting that the structure of the domain is preserved in isolation and that the stability of the isolated domain is comparable to the stability of this domain in intact L9. 相似文献
15.
Xiao H Hoerner JK Eyles SJ Dobo A Voigtman E Mel'cuk AI Kaltashov IA 《Protein science : a publication of the Protein Society》2005,14(2):543-557
Protein amide hydrogen exchange (HDX) is a convoluted process, whose kinetics is determined by both dynamics of the protein and the intrinsic exchange rate of labile hydrogen atoms fully exposed to solvent. Both processes are influenced by a variety of intrinsic and extrinsic factors. A mathematical formalism initially developed to rationalize exchange kinetics of individual amide hydrogen atoms is now often used to interpret global exchange kinetics (e.g., as measured in HDX MS experiments). One particularly important advantage of HDX MS is direct visualization of various protein states by observing distinct protein ion populations with different levels of isotope labeling under conditions favoring correlated exchange (the so-called EX1 exchange mechanism). However, mildly denaturing conditions often lead to a situation where the overall HDX kinetics cannot be clearly classified as either EX1 or EX2. The goal of this work is to develop a framework for a generalized exchange model that takes into account multiple processes leading to amide hydrogen exchange, and does not require that the exchange proceed strictly via EX1 or EX2 kinetics. To achieve this goal, we use a probabilistic approach that assigns a transition probability and a residual protection to each equilibrium state of the protein. When applied to a small protein chymotrypsin inhibitor 2, the algorithm allows complex HDX patterns observed experimentally to be modeled with remarkably good fidelity. On the basis of the model we are now in a position to begin to extract quantitative dynamic information from convoluted exchange kinetics. 相似文献
16.
Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating. 相似文献
17.
Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. 总被引:1,自引:1,他引:1 下载免费PDF全文
Z. Zhang W. Li T. M. Logan M. Li A. G. Marshall 《Protein science : a publication of the Protein Society》1997,6(10):2203-2217
Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins. 相似文献
18.
A cytochrome c kinetic folding intermediate was studied by hydrogen exchange (HX) pulse labeling. Advances in the technique and analysis made it possible to define the structured and unstructured regions, equilibrium stability, and kinetic opening and closing rates, all at an amino acid-resolved level. The entire N-terminal and C-terminal helices are formed and docked together at their normal native positions. They fray in both directions from the interaction region, due to a progression in both unfolding and refolding rates, leading to the surprising suggestion that helix propagation may proceed very slowly in the condensed milieu. Several native-like beta turns are formed. Some residues in the segment that will form the native 60s helix are protected but others are not, suggesting energy minimization to some locally non-native conformation in the transient intermediate. All other regions are unprotected, presumably dynamically disordered. The intermediate resembles a partially constructed native state. It is early, on-pathway, and all of the refolding molecules pass through it. These and related results consistently point to distinct, homogeneous, native-like intermediates in a stepwise sequential pathway, guided by the same factors that determine the native structure. Previous pulse labeling efforts have always assumed EX2 exchange during the labeling pulse, often leading to the suggestion of heterogeneous intermediates in alternative parallel pathways. The present work reveals a dominant role for EX1 exchange in the high pH labeling pulse, which will mimic heterogeneous behavior when EX2 exchange is assumed. The general problem of homogeneous versus heterogeneous intermediates and pathways is discussed. 相似文献
19.
Experimental evidence and theoretical models both suggest that protein folding is initiated within specific fragments intermittently adopting conformations close to that found in the protein native structure. These folding initiation sites encompassing short portions of the protein are ideally suited for study in isolation by computational methods aimed at peering into the very early events of folding. We have used Molecular Dynamics (MD) technique to investigate the behavior of an isolated protein fragment formed by residues 85 to 102 of barnase that folds into a β hairpin in the protein native structure. Three independent MD simulations of 1.3 to 1.8 ns starting from unfolded conformations of the peptide portrayed with an all-atom model in water were carried out at gradually decreasing temperature. A detailed analysis of the conformational preferences adopted by this peptide in the course of the simulations is presented. Two of the unfolded peptide conformations fold into a hairpin characterized by native and a larger bulk of nonnative interactions. Both refolding simulations substantiate the close relationship between interstrand compactness and hydrogen bonding network involving backbone atoms. Persistent compactness witnessed by side-chain interactions always occurs concomitantly with the formation of backbone hydrogen bonds. No highly populated conformations generated in a third simulation starting from the remotest unfolded conformer relative to the native structure are observed. However, nonnative long-range and medium-range contacts with the aromatic moiety of Trp94 are spotted, which are in fair agreement with a former nuclear magnetic resonance study of a denaturing solution of an isolated barnase fragment encompassing the β hairpin. All this lends reason to believe that the 85–102 barnase fragment is a strong initiation site for folding. Proteins 29:212–227, 1997. © 1997 Wiley-Liss, Inc. 相似文献
20.
Rational design of a three-heptad coiled-coil protein and comparison by molecular dynamics simulation with the GCN4 coiled coil: presence of interior three-center hydrogen bonds. 总被引:1,自引:0,他引:1 下载免费PDF全文
J. E. Rozzelle Jr A. Tropsha B. W. Erickson 《Protein science : a publication of the Protein Society》1994,3(2):345-355