首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ca2+对冷胁迫柑橘离体叶片的相关生理生化指标的影响   总被引:3,自引:0,他引:3  
研究了不同浓度的外源Ca^2+对柑橘离体叶片抗寒性的影响。结果表明:10-20mmol/L Ca^2+处理能够增加柑橘可溶性糖和可溶性蛋白质的含量,提高SOD和POD的活性,同时减少膜质过氧化物丙二醛(MDA)的积累,从而提高柑橘的抗寒性。  相似文献   

2.
以常温(25℃)和低温(4℃)贮藏的迎庆桃果实为试验材料,对其果实硬度、呼吸强度进行了测定,并对微粒体膜Ca^2+-ATPase、超氧化物歧化酶(SOD)活性、氧自由基变化和膜的伤害程度进行了研究.结果表明,随桃果实衰老,常温贮藏的果实硬度迅速下降、微粒体膜上的Ca^2+-ATPase活性、SOD活性和O2-产生速率均呈跃变式变化,先升高后降低;膜脂过氧化产物MDA的含量逐渐增加;与常温相比,低温可以抑制果实硬度的下降、呼吸速率、Ca^2+-ATPase和SOD活性的下降及推迟峰值的出现,同时降低O2^-产生速率和MDA含量.以上结果表明,桃果实衰老与细胞质内Ca^2+稳态的破坏和膜脂过氧化作用的加强有密切关系.  相似文献   

3.
白细胞介素-2对大鼠心肌Ca2+ATPase和Na+ /K+ATPase的影响   总被引:3,自引:0,他引:3  
Cao CM  Xia Q  Fu C  Jiang HD  Ye ZG  Shan YL  Chan JZ 《生理学报》2003,55(1):83-90
为了探讨IL-2对心肌细胞内钙影响的可能机制,用光学法检测心肌肌浆网Ca^2 ATPase的活性,以及细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性。结果:(1)用IL-2(10、40、200、800U/ml)灌流心脏后,其肌浆网Ca^2 ATPase的活性随IL-2浓度的升高而增强;(2)在ATP浓度为0.1-4mmol/L时,Ca^2 ATPase的活性随ATP浓度的升庙则增强,由IL-2(200U/ml)灌流后的心脏获得肌浆网(SR),其Ca^2 ATPase的活性对ATP的反应强于对照组;(3)在[Ca^2 ]为1-40μmol/L时,心脏SR Ca^2 ATPase的活性随[Ca^2 ]增加而增强,而IL-2灌流心脏后分离的SR,其Ca^2 ATPase活性在[Ca^2 ]升高时没有明显改变;(4)用nor-BNI(10nmol/L)预处理5min后,IL-2(200U/ml)灌流后不再使SR Ca^2 ATPase的活性增强;(5)用PTX(5mg/L)预处理后,IL-2对SR Ca^2 ATPase的影响减弱;(6)用磷脂酶C(PLC)抑制剂U73122(5μmol/L)处理后,IL-2不再使SR Ca^2 ATPase活性增高;(7)用IL-2直接处理从正常大鼠分离的SR后,对SR Ca^2 ATPase活性无明显影响;(8)IL-2灌流后,对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase活性没有显著。上述结果表明,IL-2灌流心脏后使心肌肌浆网Ca^2 ATPase的活性增加,心肌细胞膜上的κ-阿片受体及其下游的G蛋白和PLC介导了IL-2的作用。尽管IL-2提高SR Ca^2 ATPase对ATP的反应性,但却抑制SR Ca^2 ATPase对钙离子的敏感性。IL-2对心肌细胞膜Ca^2 ATPase和Na^ /K^ ATPase的活性无明显影响。  相似文献   

4.
外源H2O2胁迫对大蒜试管苗玻璃化的影响   总被引:1,自引:0,他引:1  
以大蒜品种‘二水早’为材料,研究不同浓度外源H2O2胁迫对大蒜试管苗的玻璃化发生及生理生化变化的影响.结果表明,在不同浓度外源H2O2处理下,大蒜玻璃化试管苗百分率、组织含水量、MDA含量、电解质渗透率、SOD和POD活性均高于对照,且随H2O2浓度的增加而升高,叶绿素含量则表现相反的趋势;在同一H2O2浓度下,大蒜玻璃化试管苗的组织含水量、MDA含量、电解质渗透率、SOD、POD和CAT活性均显著高于大蒜正常试管苗,叶绿素含量低于正常试管苗.研究发现,外源H2O2胁迫对大蒜试管苗玻璃化有促进作用.  相似文献   

5.
目的:测定不同金属元素对拮抗链霉菌No.24菌株的生长及发酵产物活性的影响。方法:以枯草芽孢杆菌为供试菌株,采用管碟法测定添加不同金属元素后,No.24菌株发酵产物对枯草芽孢杆菌的活性变化情况。结果:生物活性测定结果表明,不同的金属元素对No.24菌株的生长及发酵产物的活性都有不同程度的影响。Hg^2+、Ag^2+和Pb^2+能强烈抑制该菌的生长,Au^2+、Sr^2+、Co^2+、Mo^2+对其生长有一定的抑制作用,生长量略低于对照;Mn^2+、Ba^2+、Zn^2+、Cu^2+对其生长没有明显影响;Ca^2+、Mg2+对该菌的生长有一定的促进作用,菌体生物量明显高于对照。在0.001mol/L的浓度下,在培养基中加入Co^2+、Au^2+、Sr^2+,其发酵产物的杀菌活性分别为对照的74.67%、55.10%和61.95%;Ag^2+、Hg^2+和Pb^2+能强烈抑制该菌菌体生长;Ca^2+和Mg^2+则对菌的生长有明显的促进作用,当培养基中添加0.001mol/L、0.002mol/L的Mg^2+时其发酵产物的杀菌活性分别提高到136.36%和154.55%;当培养基中添加0.001mol/L0、.002mol/L的Ca^2+时其发酵产物的杀菌活性分别提高到122.73%和145.45%;在培养基中同时添加Mg^2+和Ca^2+时,且浓度为Mg^2+0.002mol/L+Ca^2+0.003mol/L时,其发酵产物的对枯草芽孢杆菌的抑菌圈直径为40mm,与对照相比,其活性提高到了181.82%,生物量提高到了162.18%。  相似文献   

6.
目的:观察大豆异黄酮(SI)对围绝经期大鼠卵巢BaxmRNA表达和Ca^2+-ATP酶活性的影响。方法:采用自然老化法建立围绝经期大鼠动物模型。12月龄的初老雌性Wistar大鼠,分别给予低(50mg/kg)、中(158mg/kg)、高(500mg/kg)剂量SI灌胃处理8周。采用RT—PCR检测卵巢BaxmRNA的表达;采用化学比色法检测卵巢Ca^2+-ATP酶活性、血清丙二醛(MDA)含量和超氧化物岐化酶(SOD)活性。结果:SI处理可使初老大鼠卵巢BaxmRNA表达和血清MDA含量降低,卵巢Ca^2+-ATP酶活性和血清SOD活性明显升高(P〈0.05或P〈0、01)。结论:大豆异黄酮下调衰老卵巢BaxmRNA表达,提高细胞Ca2^2+-ATP酶活性,可能是改善围绝经期卵巢功能的机制之一。  相似文献   

7.
在特定时间(12、24、48、72h)内,研究了Pb^2+和Cd^2+对草履虫(Paramecium caudatum)、三角涡虫(Dugesia japonica)和中华圆田螺(Cipangopaludia viviparrus)3种水生动物的单一和联合毒性效应.结果表明:在同等条件下,Cd^2+对三者的致毒效应都明显强于Pb^2+;3种动物中,草履虫最敏感,而圆田螺耐受能力最强;随单一毒物浓度的增大以及暴露时间的延长,两者的致毒效应都显著增大,表现出明显的浓度—效应和时间—效应关系;二者复合作用时,对3种动物的致毒效应主要表现为与二组分的浓度比例有关.复合致毒效应也表现出了明显的浓度—效应关系,并且浓度和暴露时间的交互作用对3种水生动物毒性都有显著的影响.  相似文献   

8.
血管平滑肌收缩的Ca^2+信号调节机制   总被引:2,自引:0,他引:2  
血管平滑肌细胞内Ca^2+的浓度([Ca^2+]i)的变化及胞内收缩蛋白对Ca^2+的敏感性是影响血管紧张的主要因素。研究表明细胞内Ca^2+浓度的变化在血管平滑肌细胞的激活中发挥重要作用。在静息状态,细胞内的Ca^2+浓度主要受膜电位的调节,同时,[Ca^2+]i也可反馈调节膜电位。在平滑肌细胞内存在多种[Ca^2+]i调节机制。本文概述了这些机制在调节血管平滑肌紧张中的作用,主要包括:[Ca^2+]i在血管平滑肌收缩中的作用;环二磷酸腺苷(cADPR)在调节Ca^2+释放中的作用;cADPR介导的肉桂碱受体的激活在调节平滑肌紧张度中的作用;血管平滑肌细胞的Ca^2+闪烁和细胞膜Ca^2+敏感性钾通道的激活;[Ca^2+]i与膜电位之间的相互作用等。  相似文献   

9.
目的:观察青藤碱对血管平滑肌细胞(VSMC)丝裂素活化蛋白激酶(MAPK)、蛋白激酶C(PKC)活性和胞内游离钙浓度([Ca^2+i])的影响。方法:将VSMC正常培养液、ox-LDL诱导血管内皮细胞(VEC)损伤的条件培养基、青藤碱加ox-LDL诱导VEC损伤的条件培养基等分别作用于VSMC,采用β-放射活性法等测定MAPK及PKC活性,荧光光度法检测VSMC[Ca^2+]i。结果:VEC损伤条件培养基作用于VSMC后,与正常培养VSMC相比,细胞MAPK、PKC活性明显增加(P〈0.01),细胞[Ca^2+]i增加;青藤碱作用于VEC损伤条件培养基培养的VSMC后,与模型组相比,MAPK及PKC活性明显减少(P〈0.01)、细胞[Ca^2+]i降低。结论:青藤碱抑制VSMC增殖的作用可能与拮抗MAPK、PKC活性和细胞[Ca^2+]i的增加有关。  相似文献   

10.
以胭脂草(Rivina humilis)为材料,采用溶液培养法,研究系列浓度的锰铁复合胁迫对其若干逆境生理指标的影响。结果表明,当锰铁复合胁迫浓度为6 mmol/L Mn2++0.5 mmol/L Fe2+时,叶绿素含量和可溶性糖含量均极显著高于对照,并达最大值;与此同时,MDA含量极显著降低,并达呈最小值。该组合处理能维持胭脂草较高水平的保护酶(SOD、POD、CAT)活性。由此说明,适宜浓度的锰铁复合处理,能在一定程度上缓解单一金属的毒害作用,提高胭脂草对锰铁复合胁迫环境的耐受性。  相似文献   

11.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

12.
Two mechanisms of passive Ca2+ transport, Na+-Ca2+ exchange and Ca2+-Ca2+ exchange, were studied using highly-purified dog heart sarcolemmal vesicles. About 80% of the Ca2+ accumulated by Na+-Ca2+ exchange or Ca2+-Ca2+ exchange could be released as free Ca2+, while up to 20% was probably bound. Na+-Ca2+ exchange was simultaneous, coupled countertransport of Na+ and Ca2+. The movement of anions during Na+-Ca2+ exchange did not limit the initial rate of Na+-Ca2+ exchange. Na+-Ca2+ exchange was electrogenic, with a reversal potential of about -105 mV. The apparent flux ratio of Na+-Ca2+ exchange was 4 Na+:1 Ca2+. Coupled cation countertransport by the Na+-Ca2+ exchange mechanism required a monovalent cation gradient with the following sequence of ion activation: Na+ much greater than Li+ greater than Cs+ greater than K+ greater than Rb+. In contrast to Na+-Ca2+ exchange, Ca2+-Ca2+ exchange did not require a monovalent cation gradient, but required the presence of Ca2+ plus a monovalent cation on both sides of the vesicle membrane. The sequence of ion activation of Ca2+-Ca2+ exchange was: K+ much greater than Rb+ greater than Na+ greater than Li+ greater than Cs+. Na+ inhibited Ca2+-Ca2+ exchange when Ca2+-Ca2+ exchange was supported by another monovalent cation. Both Na+-Ca2+ exchange and Ca2+-Ca2+ exchange were inhibited, but with different sensitivities, by external MgCl2, quinidine, or verapamil.  相似文献   

13.
14.
Prevailing models postulate that high Ca2+ selectivity of Ca2+ release-activated Ca2+ (CRAC) channels arises from tight Ca2+ binding to a high affinity site within the pore, thereby blocking monovalent ion flux. Here, we examined the contribution of high affinity Ca2+ binding for Ca2+ selectivity in recombinant Orai3 channels, which function as highly Ca2+-selective channels when gated by the endoplasmic reticulum Ca2+ sensor STIM1 or as poorly Ca2+-selective channels when activated by the small molecule 2-aminoethoxydiphenyl borate (2-APB). Extracellular Ca2+ blocked Na+ currents in both gating modes with a similar inhibition constant (Ki; ∼25 µM). Thus, equilibrium binding as set by the Ki of Ca2+ blockade cannot explain the differing Ca2+ selectivity of the two gating modes. Unlike STIM1-gated channels, Ca2+ blockade in 2-APB–gated channels depended on the extracellular Na+ concentration and exhibited an anomalously steep voltage dependence, consistent with enhanced Na+ pore occupancy. Moreover, the second-order rate constants of Ca2+ blockade were eightfold faster in 2-APB–gated channels than in STIM1-gated channels. A four-barrier, three–binding site Eyring model indicated that lowering the entry and exit energy barriers for Ca2+ and Na+ to simulate the faster rate constants of 2-APB–gated channels qualitatively reproduces their low Ca2+ selectivity, suggesting that ion entry and exit rates strongly affect Ca2+ selectivity. Noise analysis indicated that the unitary Na+ conductance of 2-APB–gated channels is fourfold larger than that of STIM1-gated channels, but both modes of gating show a high open probability (Po; ∼0.7). The increase in current noise during channel activation was consistent with stepwise recruitment of closed channels to a high Po state in both cases, suggesting that the underlying gating mechanisms are operationally similar in the two gating modes. These results suggest that both high affinity Ca2+ binding and kinetic factors contribute to high Ca2+ selectivity in CRAC channels.  相似文献   

15.
In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+]e and [Ca2+]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+- induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release.  相似文献   

16.
The effect of Mg2+ on hepatic microsomal Ca2+ and Sr2+ transport   总被引:2,自引:0,他引:2  
The ATP-dependent uptake of Ca2+ by rat liver microsomal fraction is dependent upon Mg2+. Studies of the Mg2+ requirement of the underlying microsomal Ca2+-ATPase have been hampered by the presence of a large basal Mg2+-ATPase activity. We have examined the effect of various Mg2+ concentrations on Mg2+-ATPase activity, Ca2+ uptake, Ca2+-ATPase activity and microsomal phosphoprotein formation. Both Mg2+-ATPase activity and Ca2+ uptake were markedly stimulated by increasing Mg2+ concentration. However, the Ca2+-ATPase activity, measured concomitantly with Ca2+ uptake, was apparently unaffected by changes in the Mg2+ concentration. In order to examine the apparent paradox of Mg2+ stimulation of Ca2+ uptake but not of Ca2+-ATPase activity, we examined the formation of the Ca2+-ATPase phosphoenzyme intermediate and formation of a Mg2+-dependent phosphoprotein, which we have proposed to be an attribute of the Mg2+-ATPase activity. We found that Ca2+ apparently inhibited formation of the Mg2+-dependent phosphoprotein both in the absence and presence of exogenous Mg2+. This suggests that Ca2+ may inhibit (at least partially) the Mg2+-ATPase activity. However, inclusion of the Ca2+ inhibition of Mg2+-ATPase activity in the calculation of Ca2+-ATPase activity reveals that this effect is insufficient to totally account for the stimulation of Ca2+ uptake by Mg2+. This suggests that Mg2+, in addition to stimulation of Ca2+-ATPase activity, may have a direct stimulatory effect on Ca2+ uptake in an as yet undefined fashion. In an effort to further examine the effect of Mg2+ on the microsomal Ca2+ transport system of rat liver, the interaction of this system with Sr2+ was examined. Sr2+ was sequestered into an A23187-releasable space in an ATP-dependent manner by rat liver microsomal fraction. The uptake of Sr2+ was similar to that of Ca2+ in terms of both rate and extent. A Sr2+-dependent ATPase activity was associated with the Sr2+ uptake. Sr2+ promoted formation of a phosphoprotein which was hydroxylamine-labile and base-labile. This phosphoprotein was indistinguishable from the Ca2+-dependent ATPase phosphoenzyme intermediate. Sr2+ uptake was markedly stimulated by exogenous Mg2+, but the Sr2+-dependent ATPase activity was unaffected by increasing Mg2+ concentrations. Sr2+ uptake and Sr2+-dependent ATPase activity were concomitantly inhibited by sodium vanadate. In contrast to Ca2+, Sr2+ had no effect on Mg2+-dependent phosphoprotein formation. Taken together, these data indicate that Mg2+ stimulated Ca2+ and Sr2+ transport by increasing the Ca2+ (Sr2+)/ATP ratio.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
以水螅(Hydrasp)为例,通过单因子静态急性毒性试验方法和等毒性溶液法,分别研究Hg2 、Cu2 、Cd2 、Ag 、Zn2 和Pb2 对其单一和复合毒性效应。单一实验结果表明,它们对水螅毒性大小顺序为Hg2 >Cu2 >Cd2 >Ag >Zn2 >Pb2 。复合毒性实验表明,Zn2 与Cu2 、Hg2 、Pb2 、Ag ;Pb2 与Cu2 ;Hg2 与Ag ;Pb2 与Ag 这些组合对水螅联合急性毒性总体上表现出拮抗作用,Cd2 与Cu2 、Hg2 、Pb2 、Ag 组合总体上则是协同作用,Zn2 与Cd2 、Pb2与Hg2 、Cu2 与Hg2 ,Ag 在不同的浓度水平组合下明显表现出不同的毒性效应。  相似文献   

18.
Bivalent metal cations are key components in the reaction of DNA synthesis. They are necessary for all DNA polymerases, being involved as cofactors in catalytic mechanisms of nucleotide polymerization. It is also known that in the presence of Mn2+ the accuracy of DNA synthesis is considerably decreased. The findings of this work show that Cd2+ and Zn2+ selectively inhibit the Mn2+-induced error-prone DNA polymerase activity in extracts of cells from human and mouse tissues. Moreover, these cations in low concentrations also can efficiently inhibit the activity of homogeneous preparations of DNA polymerase iota (Pol ?), which is mainly responsible for the Mn2+-induced error-prone DNA polymerase activity in cell extracts. Using a primary culture of granular cells from postnatal rat cerebellum, we show that low concentrations of Cd2+ significantly increase cell survival in the presence of toxic Mn2+ doses. Thus, we have shown that in some cases low concentrations of Cd2+ can display a positive influence on cells, whereas it is widely acknowledged that this metal is not a necessary microelement and is toxic for organisms.  相似文献   

19.
[目的] 对发状念珠蓝细菌细胞进行重金属离子Cu2+(CuSO4)、Cr2+(CrCl2)和Pb2+(PbCl2)胁迫,探讨发状念珠蓝细菌细胞对重金属离子胁迫的响应.[方法] 25℃,80 μmol/(m·s)光照下,BG11培养液培养发状念珠蓝细菌,利用不同浓度(0、0.1、1.0、10、100 mg/L) Cu2+、Cr2+和pb2+胁迫发状念珠蓝细菌细胞,测定其质膜透性、超氧化物歧化酶活性、丙二醛含量、脯氨酸含量、可溶性蛋白含量以及海藻糖含量,分析发状念珠蓝细菌细胞对重金属离子胁迫的响应.[结果] 在Cu2、Cr2和pb2胁迫下,发状念珠蓝细菌细胞的外渗率和丙二醛(malondialdehyde)含量随着重金属离子浓度的升高而升高,相对渗透率和膜脂过氧化水平的变化趋势一致.超氧化物歧化酶(superoxide dismutase)活性随重金属离子浓度的升高先升后降,脯氨酸含量随着重金属离子处理浓度的升高,呈先降后升的趋势,可溶性糖含量随浓度的增大而减少.[结论] 低浓度的重金属离子可以诱导发状念珠蓝细菌细胞产生结构和生理的应激响应,高浓度会导致发状念珠蓝细菌细胞膜结构和功能的严重损害.  相似文献   

20.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号