首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein disulfide isomerase is known to play important roles in the folding of nascent polypeptides and in the formation of disulfide bonds in the endoplasmic reticulum (ER). In this study, we cloned a gene of a novel protein disulfide isomerase family from soybean leaf (Glycine max L. Merrill. cv Jack) mRNA. The cDNA encodes a protein called GmPDIM. It is composed of 438 amino acids, and its sequence and domain structure are similar to that of animal P5. Recombinant GmPDIM expressed in Escherichia coli displayed an oxidative refolding activity on denatured RNase A. The genomic sequence of GmPDIM was also cloned and sequenced. Comparison of the soybean sequence with sequences from Arabidopsis thaliana and Oryza sativa showed significant conservation of the exon/intron structure. Consensus sequences within the promoters of the GmPDIM genes contained a cis-acting regulatory element for the unfolded protein response, and other regulatory motifs required for seed-specific expression. We observed that expression of GmPDIM was upregulated under ER-stress conditions, and was expressed ubiquitously in soybean tissues such as the cotyledon. It localized to the lumen of the ER. Data from co-immunoprecipitation experiments suggested that GmPDIM associated non-covalently with proglycinin, a precursor of the seed-storage protein glycinin. In addition, GmPDIM associated with the alpha' subunit of beta-conglycinin, a seed-storage protein in the presence of tunicamycin. These results suggest that GmPDIM may play a role in the folding of storage proteins and functions not only as a thiol-oxidoredactase, but also as molecular chaperone.  相似文献   

2.
Because of their marked responsiveness to induction signals, genes encoding pathogenesis-related proteins are used as markers to monitor defense gene expression in plants. To develop a non-invasive bioluminescence reporter assay system, we tested acidic PR-1 gene promoters from tobacco and Arabidopsis. These two promoters share common regulatory elements and are believed to show similar responsiveness to various stimuli but the results of transient expression assays by microprojectile bombardment of various plant cells and npr1 mutant Arabidopsis suggest that the tobacco PR-1a promoter is superior to its Arabidopsis counterpart in terms of responsiveness to salicylic acid treatment. Transgenic Arabidopsis seedlings harboring the tobacco PR-1a promoter fused to firefly luciferase showed marked induction in response to treatment with chemicals that induce defense gene expression in plants. These results suggest that the tobacco PR-1a promoter is applicable in monitoring defense-gene expression in various plant species.  相似文献   

3.
Because of their marked responsiveness to induction signals, genes encoding pathogenesis-related proteins are used as markers to monitor defense gene expression in plants. To develop a non-invasive bioluminescence reporter assay system, we tested acidic PR-1 gene promoters from tobacco and Arabidopsis. These two promoters share common regulatory elements and are believed to show similar responsiveness to various stimuli but the results of transient expression assays by microprojectile bombardment of various plant cells and npr1 mutant Arabidopsis suggest that the tobacco PR-1a promoter is superior to its Arabidopsis counterpart in terms of responsiveness to salicylic acid treatment. Transgenic Arabidopsis seedlings harboring the tobacco PR-1a promoter fused to firefly luciferase showed marked induction in response to treatment with chemicals that induce defense gene expression in plants. These results suggest that the tobacco PR-1a promoter is applicable in monitoring defense-gene expression in various plant species.  相似文献   

4.
The regulatory sequences of many genes encoding seed storage proteins have been used to drive seed-specific expression of a variety of proteins in transgenic plants. Because the levels at which these transgene-derived proteins accumulate are generally quite low, we investigated the utility of the arcelin-5 regulatory sequences in obtaining high seed-specific expression in transgenic plants. Arcelin-5 is an abundant seed protein found in some wild common bean (Phaseolus vulgaris L.) genotypes. Seeds of Arabidopsis and Tepary bean (Phaseolus acutifolius A. Gray) plants transformed with arcelin-5 gene constructs synthesized arcelin-5 to levels of 15% and 25% of the total protein content, respectively. To our knowledge, such high expression levels directed by a transgene have not been reported before. The transgenic plants also showed low plant-to-plant variation in arcelin expression. Complex transgene integration patterns, which often result in gene silencing effects, were not associated with reduced arcelin-5 expression. High transgene expression was the result of high mRNA steady-state levels and was restricted to seeds. This indicates that all requirements for high seed-specific expression are cis elements present in the cloned genomic arcelin-5 sequence and trans-acting factors that are available in Arabidopsis and Phaseolus spp., and thus probably in most dicotyledonous plants.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
ABA-regulated promoter activity in stomatal guard cells   总被引:4,自引:0,他引:4  
CDeT6-19 is an ABA-regulated gene which has been isolated from Craterostigma plantagineum . The CDeT6-19 gene promoter has been fused to the β- glucuronidase reporter gene ( GUS ) and used to stably transform Arabidopsis thaliana and Nicotiana tabacum . This construct has been shown to be expressed in stomatal guard cells and often in the adjacent epidermal cells of both species in response to both exogenous ABA and drought stress. These results indicate that the stomatal guard cell is competent to relay an ABA signal to the nucleus. In contrast GUS expression directed by the promoter from a predominantly seed-specific, ABA-regulated gene, Em , or the promoter from the ABA-regulated CDeT27-45 gene is not detectable in the epidermal or guard cells of tobacco or Arabidopsis in response to ABA. The fact that not all ABA-regulated gene promoters are active in stomatal guard cells suggests that effective transduction of the signal is dependent upon particular regions within the gene promoter or that guard cells lack all or part of the specific transduction apparatus required to couple the ABA signal to these promoters. This suggests that there are multiple ABA stimulus response coupling pathways. The identification of a regulatory sequence from an ABA-induced gene which is expressed in stomatal guard cells creates the possibility of examining the role of Ca2+ and other second messengers in ABA-induced gene expression.  相似文献   

19.
We have designed protein molecules based on an -helical coiled-coil structure. These proteins can be tailored to complement nutritionally unbalanced seed meals. In particular, these proteins may contain up to 43% mol/mol of the essential amino acid lysine. Genes encoding such proteins were constructed using synthetic oligonucleotides and the protein stability was tested for in vivo by expression in an Escherichia coli model system. A protein containing 31% lysine and 20% methionine (CP 3-5) was expressed in transgenic tobacco seeds utilizing the seed specific bean phaseolin and soybean -conglycinin promoters. Both promoters provided a level of expression in the mature transgenic tobacco seeds which resulted in a significant increase in the total lysine content of the seeds. Several of these transgenic lines were analyzed for three generations to determine the stability of gene expression. Plants transformed with the soybean -conglycinin promoter/CP 3-5 gene consistently expressed the high-lysine phenotype through three generations. However, expression of the high-lysine phenotype in plants transformed with the bean phaseolin/CP 3-5 was variable. This is the first report of a significant increase in seed lysine content due to the seed-specific expression of a de novo protein sequence.  相似文献   

20.
Caleosins or related sequences have been found in a wide range of higher plants. In Arabidopsis, seed-specific caleosins are viewed as oil-body (OB)-associated proteins that possess Ca(2+)-dependent peroxygenase activity and are involved in processes of lipid degradation. Recent experimental evidence suggests that one of the Arabidopsis non-seed caleosins, AtCLO3, is involved in controlling stomatal aperture during the drought response; the roles of the other caleosin-like proteins in Arabidopsis remain largely uncharacterized. We have demonstrated that a novel stress-responsive and OB-associated Ca(2+)-binding caleosin-like protein, AtCLO4, is expressed in non-seed tissues of Arabidopsis, including guard cells, and down-regulated following exposure to exogenous ABA and salt stress. At the seed germination stage, a loss-of-function mutant (atclo4) was hypersensitive to ABA, salt and mannitol stresses, whereas AtCLO4-overexpressing (Ox) lines were more hyposensitive to those stresses than the wild type. In adult stage, atclo4 mutant and AtCLO4-Ox plants showed enhanced and decreased drought tolerance, respectively. Following exposure to exogenous ABA, the expression of key ABA-dependent regulatory genes, such as ABF3 and ABF4, was up-regulated in the atclo4 mutant, while it was down-regulated in AtCLO4-Ox lines. Based on these results, we propose that the OB-associated Ca(2+)-binding AtCLO4 protein acts as a negative regulator of ABA responses in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号