首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions.  相似文献   

2.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

3.
While leaves typically emerge near shoot apices around the outer surface of a plant canopy, their relative position “moves” deeper into the canopy as additional leaves emerge. The photosynthetic capacity (A max) of a given leaf can be expected to decline over time as its relative position (P r) in the canopy becomes progressively deeper; this can be observed as a spatial gradient with the A max of leaves declining distally from the shoot apex. As a consequence, we propose that the photosynthetic capacity averaged over a single leaf’s lifespan is equivalent to the average photosynthetic capacity of the entire plant canopy at a given time; in other words, there is an ergodic time to space averaging in the organization and development of plant canopies. We tested this “canopy ergodic hypothesis” in two woody (Alnus sieboldiana and Mallotus japonica) and two herbaceous (Polygonum sachalinensis and Helianthus tuberosus) species by following the photosynthetic capacity in 100 individual leaves from the time of their emergence until their death. We compared the average photosynthetic capacity of individual leaves through time (time-average) to the average photosynthetic capacity of all the leaves along a shoot at the time of emergence of the focal leaf (space-average). We found that A max and P r were positively correlated and that the time-averages of three plant species (Alnus, Mallotus, and Helianthus) were not significantly different from the corresponding space-averages, although the averages differed among individual plants. Polygonum, however, did show significant differences between time and space averages. Ergodicity appears to apply to the leaf–canopy relationship, at least approximately—the average photosynthetic capacity of a single leaf through time (time-average) can represent the average photosynthetic capacity of the entire canopy.  相似文献   

4.
Shifts in canopy structure associated with nonnative plant invasions may interact with species-specific patterns of canopy resource allocation to reinforce the invasion process. We documented differences in canopy light availability and canopy resource allocation in adjacent monospecific and mixed stands of Phragmites australis and Typha spp. in a Great Lakes coastal wetland presently undergoing Phragmites invasion to better understand how light availability influences leaf nitrogen content (Nmass) and photosynthetic capacity (Amax) in these species. Due to their horizontally oriented leaves, light attenuates more rapidly in monospecific stands of Phragmites than in monospecific stands of Typha, where leaves are more vertically-oriented. Whereas Typha canopies followed our prediction that patterns of Nmass and Amax should closely parallel patterns of canopy light availability, Nmass and Amax were consistent throughout Phragmites’ canopies. Moreover, we observed overall greater Nmass and lower photosynthetic nitrogen use efficiency in leaves of Phragmites than in leaves of Typha. Improved understanding of the link between Nmass and Amax in these canopies should improve our understanding of carbon and nitrogen cycling consequences of Phragmites invasion in wetland ecosystems.  相似文献   

5.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

6.
 We evaluated the hypothesis that photosynthetic traits differ between leaves produced at the beginning (May) and the end (November–December) of the rainy season in the canopy of a seasonally dry forest in Panama. Leaves produced at the end of the wet season were predicted to have higher photosynthetic capacities and higher water-use efficiencies than leaves produced during the early rainy season. Such seasonal phenotypic differentiation may be adaptive, since leaves produced immediately preceding the dry season are likely to experience greater light availability during their lifetime due to reduced cloud cover during the dry season. We used a construction crane for access to the upper canopy and sampled 1- to 2-month-old leaves marked in monthly censuses for six common tree species with various ecological habits and leaf phenologies. Photosynthetic capacity was quantified as light- and CO2-saturated oxygen evolution rates with a leaf-disk oxygen electrode in the laboratory (O2max) and as light-saturated CO2 assimilation rates of intact leaves under ambient CO2 (Amax). In four species, pre-dry season leaves had significantly higher leaf mass per unit area. In these four species, O2max and Amax per unit area and maximum stomatal conductances were significantly greater in pre-dry season leaves than in early wet season leaves. In two species, Amax for a given stomatal conductance was greater in pre-dry season leaves than in early wet season leaves, suggesting a higher photosynthetic water-use efficiency in the former. Photosynthetic capacity per unit mass was not significantly different between seasons of leaf production in any species. In both early wet season and pre-dry season leaves, mean photosynthetic capacity per unit mass was positively correlated with nitrogen content per unit mass both within and among species. Seasonal phenotypic differentiation observed in canopy tree species is achieved through changes in leaf mass per unit area and increased maximum stomatal conductance rather than by changes in nitrogen allocation patterns. Received: 7 March 1996 / Accepted: 1 August 1996  相似文献   

7.
Oguchi R  Hikosaka K  Hiura T  Hirose T 《Oecologia》2006,149(4):571-582
The photosynthetic light acclimation of fully expanded leaves of tree seedlings in response to gap formation was studied with respect to anatomical and photosynthetic characteristics in a natural cool-temperate deciduous forest. Eight woody species of different functional groups were used; two species each from mid-successional canopy species (Kalopanax pictus and Magnolia obovata), from late-successional canopy species (Quercus crispula and Acer mono), from sub-canopy species (Acer japonicum and Fraxinus lanuginosa) and from vine species (Schizophragma hydrangeoides and Hydrangea petiolaris). The light-saturated rate of photosynthesis (P max) increased significantly after gap formation in six species other than vine species. Shade leaves of K. pictus, M. obovata and Q. crispula had vacant spaces along cell walls in mesophyll cells, where chloroplasts were absent. The vacant space was filled after the gap formation by increased chloroplast volume, which in turn increased P max. In two Acer species, an increase in the area of mesophyll cells facing the intercellular space enabled the leaves to increase P max after maturation. The two vine species did not significantly change their anatomical traits. Although the response and the mechanism of acclimation to light improvement varied from species to species, the increase in the area of chloroplast surface facing the intercellular space per unit leaf area accounted for most of the increase in P max, demonstrating the importance of leaf anatomy in increasing P max.  相似文献   

8.
In a field rain-fed trial with 15 cassava cultivars, leaf gas exchanges and carbon isotope discrimination (Δ) of the same leaves were determined to evaluate genotypic and within-canopy variations in these parameters. From 3 to 7 months after planting leaf gas exchange was measured on attached leaves from upper, middle, and lower canopy layers. All gas exchange parameters varied significantly among cultivars as well as canopy layers. Net photosynthetic rate (P N) decreased from top canopy to bottom indicating both shade and leaf age effects. The same trend, but in reverse, was found with respect to Δ, with the highest values in low canopy level and the lowest in upper canopy. There were very significant correlations, with moderate and low values, among almost all these parameters, with P N negatively associated with intercellular CO2 concentration (C i), ratio of C i to ambient CO2 concentration C i/C a, and Δ. Across all measured leaves, Δ correlated negatively with leaf water use efficiency (WUE = photosynthesis/stomatal conductance, g s) and with g s, but positively with C i and C i/C a. The later parameters negatively correlated with leaf WUE. Across cultivars, both P N and correlated positively with storage root yield. These results are in agreement with trends predicted by the carbon isotope discrimination model.  相似文献   

9.
The effect of excision on O2 diffusion and metabolism in soybean nodules   总被引:2,自引:0,他引:2  
Nitrogen-fixing nodules of soybean [Glycine max (L.) Merr. cv. Maple Arrow inoculated with Bradyrhizobium japonicum USDA 16] were studied before and after excision from the root to determine the role the O2 regulation plays in the inhibition of nodule activity and the potential for using excised nodules nodules in studies of nodule metabolism. Relative nitrogenase (EC 1.7.99.2) activity (H2 evolution in N2:O2) and nodule respiration (CO2 evolution) were monitored first in intact nodulated roots and then in freshly excised nodules of the same plant to determine the time course of the decline in nodule metabolism. Folowing excision, nitrogenase activity and respiration declined rapidly in the first minute and then more gradually. After 40 min the rate of H2 evolution was only 14–28% of that in the intact plant. In some nodules activity declined steadily, and in others there was a partial recovery in activity ca 10 min after detachment. Infected cell O2 concentration (Oi), measured by a spectro-photometric technique, also declined after nodule detachment with a time course similar to the declines in nitrogenase activity and respiration. Following excision, Oi levels declined rapidly from ca 21 nM in attached nodules to 8–12 nM at 4–10 min after excision and then more gradually to 2–3 nM O2 at 30–40 min after excision. These results show that the nodules' permeability to gas diffusion continued to be regulated for up to 40 min after detachement. At 40 min after detachment, when excised nodules displayed steady-state rates of gas exchange, linear increases in pO2 from 20 to 100% at 4% min?1 resulted in recoveries of H2 and CO2 evolution, indicating that Oi limited nitrogenase activity durig this period, and that energy reserves were greatly in excess of the O2 available for respiration. When detached nodules were equilibrated for 12 h at 20, 30 and 50% O2, Oi values measured at supra-ambient pO2 were greater than those at 20% O2 and were linked with a more rapid decline in nitrogenase activity. Also, increases in external pO2 (Oc) failed to stimulate nodule metabolism, suggesting that the nodules' energy reserves were no longer greatly in excess of their respiratory demands. It was concluded that soybean nodules could provide useful material for steady-state studies of nodule metabolism between 40 and 240 min after detachment, but to attain metabolic rates equivalent to in vivo rates the nodules must be exposed to above-ambient pO2.  相似文献   

10.
Photosynthesis, transpiration, and leaf area distribution were sampled in mature Quercus virginiana and Juniperus ashei trees to determine the impact of leaf position on canopy-level gas exchange, and how gas exchange patterns may affect the successful invasion of Quercus communities by J. ashei. Sampling was conducted monthly over a 2-yr period in 12 canopy locations (three canopy layers and four cardinal directions). Photosynthetic and transpiration rates of both species were greatest in the upper canopy and decreased with canopy depth. Leaf photosynthetic and transpiration rates were significantly higher for Q. virginiana (4.1–6.7 μmol CO2·m−2·s−1 and 1.1–2.1 mmol H2O·m−2·s−1) than for J. ashei (2.1–2.8 μmol CO2·m−2·s−1 and 0.7–1.0 mmol H2O·m−2·s−1) in every canopy level and direction. Leaves on the south and east sides of both species had higher gas exchange rates than leaves on the north and west sides. Although Quercus had a greater mean canopy diameter than Juniperus (31.3 vs. 27.7 m2), J. ashei had significantly greater leaf area (142 vs. 58 m2/tree). A simple model combining leaf area and gas exchange rates for different leaf positions demonstrated a significantly greater total canopy carbon dioxide uptake for J. ashei compared to Q. virginiana (831 vs. 612 g CO2·tree−1·d−1, respectively). Total daily water loss was also greater for Juniperus (125 vs. 73 Ltree−1·d−1). Differences in leaf gas exchange rates were poor predictors of the relationship between the invasive J. ashei and the codominant Q. virginiana. Leaf area and leaf area distribution coupled with leaf gas exchange rates were necessary to demonstrate the higher overall competitive potential of J. ashei.  相似文献   

11.
The plant functional group approach has the potential to clarify ecological patterns and is of particular importance in simplifying the application of ecological models in high biodiversity ecosystems. Six functional groups (pasture grass, pasture sapling, top-canopy tree, top-canopy liana, mid canopy tree, and understory tree) were established a priori based on ecosystem inhabited, life form, and position within the forest canopy profile on eastern Amazonian region. Ecophysiological traits related to photosynthetic gas exchange were then used to characterize such groups. The ecophysiological traits evaluated showed considerable variations among groups. The pasture grass functional group (a C4 photosynthetic pathway species) showed high instantaneous water use efficiency (A max/g s@A max), high photosynthetic nitrogen use efficiency (A max/N area), and high ratio of A max to dark respiration (A max/R d). Among the species with the C3 photosynthetic pathway, the top-canopy liana group showed the highest mean of A max/g s@A max, statistically distinct from the lowest average presented by the understory tree group. Furthermore, the pasture sapling group showed the lowest average of A max/R d, statistically distinct from the high average observed for the understory tree group. Welch-ANOVAs followed by Games–Howell post hoc tests applied to ecophysiological traits produced reasonable distinctions among functional groups, although no significant distinction was detected between the groups top-canopy tree and pasture sapling. Species distribution within the functional groups was accurately reproduced by discriminant analyses based on species averages of ecophysiological traits. The present work convincingly shows that the functional groups identified have distinct ecophysiological characteristics, with the potential to respond differently to environmental factors. Such information is of great importance in modeling efforts that evaluate the effects of dynamic changes in tropical plant communities over ecosystem primary productivity.  相似文献   

12.
Carbon uptake by forests constitutes half of the planet’s terrestrial net primary production; therefore, photosynthetic responses of trees to rising atmospheric CO2 are critical to understanding the future global carbon cycle. At the Swiss Canopy Crane, we investigated gas exchange characteristics and leaf traits in five deciduous tree species during their eighth growing season under free air carbon dioxide enrichment in a 35-m tall, ca. 100-year-old mixed forest. Net photosynthesis of upper-canopy foliage was 48% (July) and 42% (September) higher in CO2-enriched trees and showed no sign of down-regulation. Elevated CO2 had no effect on carboxylation efficiency (V cmax) or maximal electron transport (J max) driving ribulose-1,5-bisphosphate (RuBP) regeneration. CO2 enrichment improved nitrogen use efficiency, but did not affect leaf nitrogen (N) concentration, leaf thickness or specific leaf area except for one species. Non-structural carbohydrates accumulated more strongly in leaves grown under elevated CO2 (largely driven by Quercus). Because leaf area index did not change, the CO2-driven stimulation of photosynthesis in these trees may persist in the upper canopy under future atmospheric CO2 concentrations without reductions in photosynthetic capacity. However, given the lack of growth stimulation, the fate of the additionally assimilated carbon remains uncertain.  相似文献   

13.
Oguchi R  Hikosaka K  Hiura T  Hirose T 《Oecologia》2008,155(4):665-675
Some shade leaves increase their photosynthetic capacity (P max) when exposed to a higher irradiance. The increase in P max is associated with an increase in chloroplast size or number. To accommodate those chloroplasts, plants need to make thick leaves in advance. We studied the cost and benefit of photosynthetic acclimation in mature leaves of a tree species, Kalopanax pictus Nakai, in a cool-temperate deciduous forest. Costs were evaluated as the additional investment in biomass required to make thick leaves, while the benefit was evaluated as an increase in photosynthetic carbon gain. We created gaps by felling canopy trees and examined the photosynthetic responses of mature leaves of the understorey seedlings. In the shade, leaves of K. pictus had vacant spaces that were not filled by chloroplasts in the mesophyll cells facing the intercellular space. When those leaves were exposed to higher irradiance after gap formation, the area of the mesophyll surface covered by chloroplasts increased by 17% and P max by 27%. This increase in P max led to an 11% increase in daily carbon gain, which was greater than the amount of biomass additionally invested to construct thicker leaves. We conclude that the capacity of a plant to acclimate to light (photosynthetic acclimation) would contribute to rapid growth in response to gap formation.  相似文献   

14.
Siddiq  Zafar  Zhang  Yong-Jiang 《Plant Ecology》2022,223(2):171-183

Trees on the northern boundary of Asian tropics experience hot-humid and cool-dry seasons, but little is known about their seasonal dynamics in canopy physiology. We used a canopy crane to reach the canopy of nine tropical tree species and measured canopy leaf gas exchange, water status, and trunk sap flux during the hot-humid and cool-dry seasons in Xishuangbanna, China. We found that most tree species exhibited significant reductions in maximum photosynthetic rate (Amax), stomatal conductance (gsmax), predawn and midday leaf water potentials, and maximum sap flux density in the cool-dry season. Compared to the hot-humid season, Amax declined by 19–60%, and maximum water flux declined by ?14% (an increase) to 42%. The cool-dry season decline in Amax of four species can be partly explained by an increased stomatal limitation (decreased gsmax and intercellular CO2 concentrations). Therefore, a predicted increase in drought in this region may decrease the carbon sequestration and productivity of these forests. We did not find a tradeoff between performance (Amax in the hot-humid season) and persistence through the cool-dry season; species with higher Amax in the hot-humid season did not show higher percent seasonal declines in the cool-dry season. Amax was significantly and positively associated with the trunk sap flux for both seasons, but the association was weaker in the cool-dry season. Thus, our results suggest that some tradeoffs and trait associations are environment dependent. Our results are important for understanding carbon and water fluxes of seasonal tropical forests and their responses to environmental changes.

  相似文献   

15.
Phenotyping for photosynthetic gas exchange parameters is limiting our ability to select plants for enhanced photosynthetic carbon gain and to assess plant function in current and future natural environments. This is due, in part, to the time required to generate estimates of the maximum rate of ribulose‐1,5‐bisphosphate carboxylase oxygenase (Rubisco) carboxylation (Vc,max) and the maximal rate of electron transport (Jmax) from the response of photosynthesis (A) to the CO2 concentration inside leaf air spaces (Ci). To relieve this bottleneck, we developed a method for rapid photosynthetic carbon assimilation CO2 responses [rapid A–Ci response (RACiR)] utilizing non‐steady‐state measurements of gas exchange. Using high temporal resolution measurements under rapidly changing CO2 concentrations, we show that RACiR techniques can obtain measures of Vc,max and Jmax in ~5 min, and possibly even faster. This is a small fraction of the time required for even the most advanced gas exchange instrumentation. The RACiR technique, owing to its increased throughput, will allow for more rapid screening of crops, mutants and populations of plants in natural environments, bringing gas exchange into the phenomic era.  相似文献   

16.
The hydraulic coordination along the water transport pathway helps trees provide adequate water supply to the canopy, ensuring that water deficits are minimized and that stomata remain open for CO2 uptake. We evaluated the stem and leaf hydraulic coordination and the linkages between hydraulic traits and the timing of diurnal depression of photosynthesis across seven evergreen tree species in the southern Andes. There was a positive correlation between stem hydraulic conductivity (ks) and leaf hydraulic conductance (KLeaf) across species. All species had similar maximum photosynthetic rates (Amax). The species with higher ks and KLeaf attained Amax in the morning, whereas the species with lower ks and KLeaf exhibited their Amax in the early afternoon concurrently with turgor loss. These latter species had very negative leaf water potentials, but far from the pressure at which the 88% of leaf hydraulic conductance is lost. Our results suggest that diurnal gas exchange dynamics may be determined by leaf hydraulic vulnerability such that a species more vulnerable to drought restrict water loss and carbon assimilation earlier than species less vulnerable. However, under stronger drought, species with earlier CO2 uptake depression may increase the risk of hydraulic failure, as their safety margins are relatively narrow.  相似文献   

17.
Measurements were carried out of the gas exchange properties (namely, photosynthesis, stomatal conductance and transpiration rates), water use efficiency and water relations of two mangrove species, Rhizophora mucronata and Ceriops tagal at Gazi Bay, Kenya. Rhizophora mucronata had significantly higher photosynthetic rates than C. tagal. Internal CO2 concentrations were higher during the wet season than the dry season in both species. Gas exchange properties were correlated positively with photon flux density in both species. Leaf water potentials were highest during the morning and lowest at midday and were also highest in the lower canopy leaves in both species. The two mangrove species had conservative water use. Management potential for the East African mangroves based on the results of this study is suggested.  相似文献   

18.
Nijs  I.  Impens  I. 《Plant Ecology》1993,(1):421-431
Changes in gross canopy photosynthetic rate (PGc), produced by long-term exposure to an elevated atmospheric CO2 level (626±50 µmol mol-1), were modelled forLolium perenne L. cv. Vigor andTrifolium repens L. cv. Blanca, using a simple photosynthesis model, based on biochemical and physiological information (leaf gross CO2 uptake in saturating light, Pmax, and leaf quantum efficiency, ) and structural vegetation parameters (leaf area index, LAI, canopy extinction coefficient, k, leaf transmission, M). Correction of PGc for leaf respiration allowed comparison with previously measured canopy net CO2 exchange rates, with the average divergence from model prediction amounting to about 6%. Sensitivity analysis showed that for a three-week old canopy, the PGc increase in high CO2 could be attributed largely to changes in Pmax and , while differences in canopy architecture were no longer important for the PGc-stimulation (which they were in the early growth stages). As a consequence of this increasing LAI with canopy age, the gain of daytime CO2 uptake is progressively eroded by the increasing burden of canopy respiration in high-CO2 grownLolium perenne. Modelling canopy photosynthesis in different regrowth stages after cutting (one week, two weeks,...), revealed that the difference in a 24-h CO2 balance between the ambient and the high CO2 treatment is reduced with regrowth time and completely disappears after 6 weeks.Abbreviations C350 ambient CO2 treatment - C625 high CO2 treatment - k canopy extinction coefficient - LAI leaf area index - LAImax fitted LAI-maximum - M leaf transmission - NCER net CO2 exchange rate - PGc gross canopy photosynthetic rate - Q photosynthetic photon flux density - Q0 photosynthetic photon flux density at the top of the canopy - RDc canopy dark respiration rate - RDl leaf dark respiration rate - t regrowth time after cutting - T air temperature - leaf quantum efficiency - LAI rate of initial LAI-increase with time  相似文献   

19.
The possible interference when measuring gas exchange with respiratory CO2 produced under the gasket of commercially available clamp‐on leaf chambers was investigated. Two of these chambers were compared with a leaf chamber that accommodated an entire leaf without clamping it under a gasket. An overestimation of dark respiration rate (RD) by 55% was found with Plantago major leaves, a species with homobaric leaves that have high resistance for lateral gaseous transport. The percentage was similar in the heterobaric Ficus benjamina, but was 32% in the highly porous homobaric Nicotiana tabacum. Net photosynthetic rate at low photon flux density was underestimated by 35% in the clamp‐on chamber. However, the gasket effect was not detectable at light saturation because the error was small in comparison with the high photosynthetic rates. Estimation of respiration in the light (RL) in Nicotiana as derived from CO2 exchange at low CO2 concentrations was complicated by three factors. The inward diffusion of respiratory CO2 from under the gasket was added to a diffusion of CO2 from outside through the gasket material and through the leaf, which produced an even larger error in RL in comparison with RD at ambient CO2. These errors are significant for estimations of carbon gain at whole plant and canopy level and also at the leaf level when photosynthetic rates are low. Possible improvements in gasket design and corrections of CO2 exchange measurements for the gasket effect are discussed.  相似文献   

20.
Abstract: Parameters associated with the photosynthetic performance of eight common epiphytic ferns in a Mexican cloud forest were investigated in relation to the distribution of these species within the canopy. If the substantial microclimatic gradients within tropical forest canopies provide microhabitats exploited by different epiphytic species, we would expect to find correlations between distribution and physiological traits. Maximum rates of CO2 uptake (Amax) and photon flux densities at light compensation points (LCP) were in the range of shade plants (Amax = 0.6 ‐ 5.2 μmol m‐2 s‐1; LCP = 4 ‐ 6.5 μmol m‐2 s‐1), but saturation light intensities were more typical for sun plants (270 ‐ 550 μmol m‐2 s‐1). Amax and nitrogen content per unit dry weight were correlated with the distribution of the species within the canopy, but LCP, apparent quantum yield and dark respiration were not. When leaves were left to desiccate, the fluorescence yield of dark‐adapted leaves (Y0) remained high until the relative water content (RWC) had dropped below 30 to 20 %. Fluorescence after short illumination with 200 μmol m‐2 s‐1 declined when RWC dropped below 70 to 40 %. After exposure to full sunlight for 1 h, Y0 of species growing in the outer canopy (Pleopeltis mexicana and Polypodium plebeium) and a plant characteristic of the mid‐canopy (Elaphoglossum petiolatum) recovered better than in species from shadier locations (Trichomanes bucinatum, Asplenium cuspidatum, Phlebodium areolatum). With the exception of Ph. areolatum and a species growing at both exposed and shaded sites (Polypodium puberulum), Y0 recovered at least partially after a loss of 80 ‐ 96 % of saturation water, with the humidity‐loving filmy fern (T. bucinatum) showing no signs of permanent damage at all. The results suggest that tolerance or avoidance of desiccation and high light may be at least as important in controlling the distribution of the species studied as photosynthetic performance without stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号