首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hua QX  Jia W  Frank BH  Phillips NF  Weiss MA 《Biochemistry》2002,41(50):14700-14715
Proinsulin contains six cysteines whose specific pairing (A6-A11, A7-B7, and A20-B19) is a defining feature of the insulin fold. Pairing information is contained within A and B domains as demonstrated by studies of insulin chain recombination. Two insulin isomers containing non-native disulfide bridges ([A7-A11,A6-B7,A20-B19] and [A6-A7,A11-B7,A20-B19]), previously prepared by directed chemical synthesis, are metastable and biologically active. Remarkably, the same two isomers are preferentially formed from native insulin or proinsulin following disulfide reassortment in guanidine hydrochloride. The absence of other disulfide isomers suggests that the observed species exhibit greater relative stability and/or kinetic accessibility. The structure of the first isomer ([A7-A11,A6-B7,A20-B19], insulin-swap) has been described [Hua, Q. X., Gozani, S. N., Chance, R. E., Hoffmann, J. A., Frank, B. H., and Weiss, M. A. (1995) Nat. Struct. Biol. 2, 129-138]. Here, we demonstrate that the second isomer (insulin-swap2) is less ordered than the first. Nativelike elements of structure are retained in the B chain, whereas the A chain is largely disordered. Thermodynamic studies of guanidine denaturation demonstrate the instability of the isomers relative to native insulin (DeltaDeltaG(u) > 3 kcal/mol). In contrast, insulin-like growth factor I (IGF-I) and the corresponding isomer IGF-swap, formed as alternative products of a bifurcating folding pathway, exhibit similar cooperative unfolding transitions. The insulin isomers are similar in structure and stability to two-disulfide analogues whose partial folds provide models of oxidative folding intermediates. Each exhibits a nativelike B chain and less-ordered A chain. This general asymmetry is consistent with a hierarchical disulfide pathway in which nascent structure in the B chain provides a template for folding of the A chain. Structures of metastable disulfide isomers provide probes of the topography of an energy landscape.  相似文献   

2.
Insulin contains two inter-chain disulfide bonds between the A and B chains (A7-B7 and A20-B19), and one intra-chain linkage in the A chain (A6-A11). To investigate the role of each disulfide bond in the structure, function and stability of the molecule, three des mutants of human insulin, each lacking one of the three disulfide bonds, were prepared by enzymatic conversion of refolded mini-proinsulins. Structural and biological studies of the three des mutants revealed that all three disulfide bonds are essential for the receptor binding activity of insulin, whereas the different disulfide bonds make different contributions to the overall structure of insulin. Deletion of the A20-B19 disulfide bond had the most substantial influence on the structure as indicated by loss of ordered secondary structure, increased susceptibility to proteolysis, and markedly reduced compactness. Deletion of the A6-A11 disulfide bond caused the least perturbation to the structure. In addition, different refolding efficiencies between the three des mutants suggest that the disulfide bonds are formed sequentially in the order A20-B19, A7-B7 and A6-A11 in the folding pathway of proinsulin.  相似文献   

3.
Three of the five disulfide bonds in the glycoprotein hormone alpha-subunit (GPH-alpha) form a cystine knot motif that stabilizes a three-loop antiparallel structure. Previously, we described a mutant (alpha(k)) that contained only the three knot disulfide bonds and demonstrated that the cystine knot was necessary and sufficient for efficient GPH-alpha folding and secretion. In this study, we used alpha(k) as a model to study the intracellular GPH-alpha folding pathway. Cystine knot formation proceeded through a 1-disulfide intermediate that contained the 28-82 disulfide bond. Formation of disulfide bond 10-60, then disulfide bond 32-84, followed the formation of 28-82. Whether the two non-cystine knot bonds 7-31 and 59-87 could form independent of the knot was also tested. Disulfide bond 7-31 formed rapidly, whereas 59-87 did not form when all cysteine residues of the cystine knot were converted to alanine, suggesting that 7-31 forms early in the folding pathway and that 59-87 forms during or after cystine knot formation. Finally, loop 2 of GPH-alpha has been shown to be very flexible, suggesting that loop 2 does not actively drive GPH-alpha folding. To test this, we replaced residues 36-55 in the flexible loop 2 with an artificially flexible glycine chain. Consistent with our hypothesis, folding and secretion were unaffected when loop 2 was replaced with the glycine chain. Based on these findings, we describe a model for the intracellular folding pathway of GPH-alpha and discuss how these findings may provide insight into the folding mechanisms of other cystine knot-containing proteins.  相似文献   

4.
Oxidative folding of insulin-like growth factor I (IGF-I) and single-chain insulin analogs proceeds via one- and two-disulfide intermediates. A predominant one-disulfide intermediate in each case contains the canonical A20-B19 disulfide bridge (cystines 18-61 in IGF-I and 19-85 in human proinsulin). Here, we describe a disulfide-linked peptide model of this on-pathway intermediate. One peptide fragment (19 amino acids) spans IGF-I residues 7-25 (canonical positions B8-B26 in the insulin superfamily); the other (18 amino acids) spans IGF-I residues 53-70 (positions A12-A21 and D1-D8). Containing only half of the IGF-I sequence, the disulfide-linked polypeptide (designated IGF-p) is not well ordered. Nascent helical elements corresponding to native alpha-helices are nonetheless observed at 4 degrees C. Furthermore, (13)C-edited nuclear Overhauser effects establish transient formation of a native-like partial core; no non-native nuclear Overhauser effects are observed. Together, these observations suggest that early events in the folding of insulin-related polypeptides are nucleated by a native-like molten subdomain containing Cys(A20) and Cys(B19). We propose that nascent interactions within this subdomain orient the A20 and B19 thiolates for disulfide bond formation and stabilize the one-disulfide intermediate once formed. Substitutions in the corresponding region of insulin are associated with inefficient chain combination and impaired biosynthetic expression. The intrinsic conformational propensities of a flexible disulfide-linked peptide thus define a folding nucleus, foreshadowing the structure of the native state.  相似文献   

5.
Insulin is one of the most important hormonal regulators of metabolism. Since the diabetes patients increase dramatically, the chemical properties, biological and physiological effects of insulin had been extensively studied. In last decade the development of NMR technique allowed us to determine the solution structures of insulin and its variety mutants in various conditions, so that the knowledge of folding, binding and stability of insulin in solution have been largely increased. The solution structure of insulin monomers is essentially identical to those of insulin monomers within the dimer and bexamer as determined by X-ray diffraction. The studies of insulin mutants at the putative residues for receptor binding explored the possible conformational change and fitting between insulin and its receptor. The systematical studies of disulfide paring coupled insulin folding intermediates revealed that in spite of the conformational variety of the intermediates, one structural feature is always remained: a “native-like B chain super-secondary structure“, which consists of B9-B19 helix with adjoining B23-B26 segment folded back against the central segment of B chain, an internal cystine A20-B19 disulfide bridge and a short a-helix at C-terminal of A chain linked. The “super-secondary structure“ might be the “folding nucleus“ in insulin folding mechanism. Cystine A20-B19 is the most important one among three disulfides to stabilize the nascent polypeptide in early stage of the folding. The NMR structure of C. elegans insulin-like peptide resembles that of human insulin and the peptide interacts with human insulin receptor. Other members of insulin superfamily adopt the “insulin fold“ mostly. The structural study of insulin-insulin receptor complex, that of C elegans and other invertebrate insulin-like peptide, insulin fibril study and protein disulfide isomerase (PDI) assistant proinsulin folding study will be new topics in future to get insight into folding, binding, stability, evolution and fibrillation of insulin in detail.  相似文献   

6.
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.  相似文献   

7.
Summary The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.  相似文献   

8.
The in vitro refolding process of the double-chain insulin was studied based on the investigation of in vitro single-chain insulin refolding. Six major folding intermediates, named P1A, P2B, P3A, P4B, P5B, and P6B, were captured during the folding process. The refolding experiments indicate that all of these intermediates are on-pathway. Based on these intermediates and the formation of hypothetic transients, we propose a two-stage folding pathway of insulin. (1) At the early stage of the folding process, the reduced A chain and B chain individually formed the intermediates two A chain intermediates (P1A and P3A), and four B chain intermediates (P2B, P4B, P5B, and P6B). (2) In the subsequent folding process, transient Ⅰ was formed from P3A through thiol/disulfide exchange reaction; then, transients Ⅱ and Ⅲ, each containing two native disulfides, were formed through the recognition and interaction of transient Ⅰ with P4B or P6B and the thiol group's oxidation reaction mainly using GSSG as oxidative reagent; finally, transients Ⅱ and Ⅲ, through thiol/mixture disulfide exchange reaction, formed the third native disulfide of insulin to complete the folding.  相似文献   

9.
The A and B chains of insulin combine to form native disulfide bridges without detectable isomers. The fidelity of chain combination thus recapitulates the folding of proinsulin, a precursor protein in which the two chains are tethered by a disordered connecting peptide. We have recently shown that chain combination is blocked by seemingly conservative substitutions in the C-terminal alpha-helix of the A chain. Such analogs, once formed, nevertheless retain high biological activity. By contrast, we demonstrate here that chain combination is robust to non-conservative substitutions in the N-terminal alpha-helix. Introduction of multiple glycine substitutions into the N-terminal segment of the A chain (residues A1-A5) yields analogs that are less stable than native insulin and essentially without biological activity. (1)H NMR studies of a representative analog lacking invariant side chains Ile(A2) and Val(A3) (A chain sequence GGGEQCCTSICSLYQLENYCN; substitutions are italicized and cysteines are underlined) demonstrate local unfolding of the A1-A5 segment in an otherwise native-like structure. That this and related partial folds retain efficient disulfide pairing suggests that the native N-terminal alpha-helix does not participate in the transition state of the reaction. Implications for the hierarchical folding mechanisms of proinsulin and insulin-like growth factors are discussed.  相似文献   

10.
We have previously provided evidence that laminin assembly occurs by the specific interaction of the alpha-helical domains of the A, B1, and B2 chains, located within the long arm of the molecule (Hunter, I., Schulthess, T., Bruch, M., Beck, K., and Engel, J. (1990) Eur. J. Biochem. 188, 205-211). Recent evidence for noncoordinate synthesis of the laminin chains, and in particular, the absence of the 400-kDa A chain from laminins produced by a number of cell types, has led us to examine the molecular mechanism of laminin assembly using the isolated A and B1-B2 chains of laminin fragment E8. E8A shows little tendency to self-associate, and when renatured from urea forms globular structures with little detectable alpha-helix. In contrast, E8B1-B2 renatures to form rod-like molecules, 30 nm in length. The rod-like structure, high alpha-helix content, and sharp thermal transition indicate that they are double stranded coiled coils. When mixed in equimolar amounts, E8A and E8B1-B2 renature to form molecules which are biochemically and ultrastructurally indistinguishable from native E8. If E8A and E8B1-B2 are renatured separately and mixed at a 1:1 molar ratio, they also form E8 molecules. These results suggest a mechanism of laminin assembly which involves the formation of a double coiled-coil B1-B2 intermediate with which the A chain subsequently interacts to form a triple coiled-coil laminin molecule. In addition, our results indicate that isoforms consisting of the B1 and B2 chains only would form stable "laminin-like" structures.  相似文献   

11.
Guo ZY  Jia XY  Feng YM 《Biological chemistry》2004,385(12):1171-1175
Insulin contains three disulfide bonds, one intrachain bond, A6-A11, and two interchain bonds, A7-B7 and A20-B19. Site-directed mutagenesis results (the two cysteine residues of disulfide A7-B7 were replaced by serine) showed that disulfide A7-B7 is crucial to both the structure and activity of insulin. However, chemical modification results showed that the insulin analogs still retained relatively high biological activity when A7Cys and B7Cys were modified by chemical groups with a negative charge. Did the negative charge of the modification groups restore the loss of activity and/or the disturbance of structure of these insulin analogs caused by deletion of disulfide A7-B7? To answer this question, an insulin analog with both A7Cys and B7Cys replaced by Glu, which has a long side-chain and a negative charge, was prepared by protein engineering, and its structure and activity were analyzed. Both the structure and activity of the present analog are very similar to that of the mutant with disulfide A7-B7 replaced by Ser, but significantly different from that of wild-type insulin. The present results suggest that removal of disulfide A7-B7 will result in serious loss of biological activity and the native conformation of insulin, even if the disulfide is replaced by residues with a negative charge.  相似文献   

12.
Guo ZY  Feng YM 《Biological chemistry》2001,382(3):443-448
Using site-directed mutagenesis we deleted the two inter-chain disulfide bonds of insulin, separately or both, by substitution of the cysteine residues with serine. Deletion of A20-B19 or both of the two inter-chain disulfide bonds resulted in the complete loss of secretion of the mutant single-chain porcine insulin precursor (PIP) from Saccharomyces cerevisiae cells. Removal of the A7-B7 disulfide bond resulted in a large reduction of secretion, but we could obtain the mutant for analysis of its biological and some physico-chemical properties. The A7-B7 disulfide bond deleted insulin mutant retained only 0.1% receptor-binding activity compared with porcine insulin, and its in vivo biological potency measured by mouse convulsion assay was also very low. We also studied some physico-chemical properties of the mutant using circular dichroism, native polyacrylamide gel electrophoresis and reversed-phase HPLC, which revealed some structural changes of the mutant peptides compared to native insulin. The present study shows that the two inter-chain disulfide bonds are important for efficient in vivo folding/secretion of PIP from yeast, especially the A20-B19 disulfide bond, and that the A7-B7 disulfide bond is crucial for maintaining the native conformation and biological activity of insulin.  相似文献   

13.
To investigate the role of the A20-B19 disulfide bond in the structure, activity and folding of proinsulin, a human proinsulin (HPI) mutant [A20, B19Ala]-HPI was prepared. This mutant, together with another proinsulin mutant previously constructed with an A19Tyr deletion, which can also be taken as shifted mutant of the A20-B19 disulfide bond, were studied for their in vitro refolding, oxidation of free thiol groups, circular dichroism spectra, antibody and receptor binding activities and sensitivity to trypsin digestion in comparison with native proinsulin. The results indicate that deletion of the A20-B19 disulfide bond results in a large decrease in the alpha-helix content of the molecule and higher sensitivity to tryptic digestion. Both the deletion and shift mutations, especially the latter, cause a great decrease in the biological activity of proinsulin analogues. The folding yields of HPI analogues were much lower than that of HPI. And the shift mutant, [Delta A19Tyr]-HPI, was scarcely refolded correctly in vitro and its refolding yield was extremely low. These results suggest that the A20-B19 disulfide bond plays an important role in the structural stabilization and folding of the insulin precursor. By summarizing the refolding studies on proinsulin, a possible folding pathway is proposed.  相似文献   

14.
Büllesbach EE  Schwabe C 《Biochemistry》2012,51(20):4198-4205
The relaxin-like factor (RLF) also named insulin-like 3 (INSL3) consists of two polypeptide chains linked by two interchain and one intrachain disulfide bond. RLF binds to its receptor (LGR8 also named RXFP2) through the B chain and initiates transmembrane communication by activating the adenylate cyclase through the N-terminal region of both chains. Cystine A11-B10 occupies a unique position on the molecular surface just outside the binding region and between the two signaling ports. We have synthesized an RLF analogue in which the disulfide A11-B10 was replaced by a peptide bond and found that cAMP production ceased while receptor binding was not affected. In contrast, replacing the disulfide A24-B22 by a peptide bond reduced potency proportional to the binding affinity and lowered efficacy to 65%, while replacing disulfide A10-A15 by a peptide bond reduced binding affinity to 32% and lowered potency to 7% but maintained 100% efficacy. The exceptional properties of the derivative bearing an A11-B10 isopeptide cross-link suggests that the disulfide has a special role in signal transduction. We propose that disulfide A11-B10 serves as an insulator between the two ports, whereas the amide functionality disturbs the signal transmission complex likely due to changes in polarity. The clear separation between receptor binding and signal activation sites within this small protein permits one to study how the relaxin-like factor initiates the signal on the receptor that induces intracellular cAMP production.  相似文献   

15.
We have examined the collagenous proteins extracted from skin and produced by skin fibroblast cultures from the members of a family with mild dominant osteogenesis imperfecta (OI type I). The two affected patients, mother and son, produce two populations of alpha 1(I) chains of type I collagen, one chain being normal, the other containing a cysteine within the triple-helical domain. Both forms can be incorporated into triple-helical molecules with an alpha 2(I) chain. When two mutant alpha (I) chains are incorporated into the same molecule, a disulfide bonded dimer is produced. We have characterized these chains by sodium dodecyl sulfate-gel electrophoresis and CNBr-peptide mapping and by measuring a number of biosynthetic and physical variables. The cysteine was localized to the COOH-terminal peptide alpha (I) CB6. Molecules containing the mutant chains are stable, have a normal denaturation temperature, are secreted normally, and have normal levels of post-translational modification of lysyl residues and intracellular degradation. We have compared and contrasted these observations with those made in a patient with lethal osteogenesis imperfecta in which there was a cysteine substitution in alpha 1(I) CB6 (Steinmann, B., Rao, V. H., Vogel, A., Bruckner, P., Gitzelmann, R., and Byers, P. H. (1984) J. Biol. Chem 259, 11129-11138) and have concluded that the mutation in the present family occurs in the X or Y position of a Gly-X-Y repeating unit of collagen and not in the glycine position shown for the previous patient (Cohn, D. H., Byers, P. H., Steinmann, B, and Gelinas, R. E. (1986) Proc. Natl. Acad. Sci. U. S. A., in press.  相似文献   

16.
Weiss MA  Hua QX  Jia W  Chu YC  Wang RY  Katsoyannis PG 《Biochemistry》2000,39(50):15429-15440
A hierarchical pathway of protein folding can enable segmental unfolding by design. A monomeric insulin analogue containing pairwise substitution of internal A6-A11 cystine with serine [[Ser(A6),Ser(A11),Asp(B10),Lys(B28),Pro(B29)]insulin (DKP[A6-A11](Ser))] was previously investigated as a model of an oxidative protein-folding intermediate [Hua, Q. X., et al. (1996) J. Mol. Biol. 264, 390-403]. Its structure exhibits local unfolding of an adjoining amphipathic alpha-helix (residues A1-A8), leading to a 2000-fold reduction in activity. Such severe loss of function, unusual among mutant insulins, is proposed to reflect the cost of induced fit: receptor-directed restoration of the alpha-helix and its engagement in the hormone's hydrophobic core. To test this hypothesis, we have synthesized and characterized the corresponding alanine analogue [[Ala(A6),Ala(A11),Asp(B10),Lys(B28), Pro(B29)]insulin (DKP[A6-A11](Ala))]. Untethering the A6-A11 disulfide bridge by either amino acid causes similar perturbations in structure and dynamics as probed by circular dichroism and (1)H NMR spectroscopy. The analogues also exhibit similar decrements in thermodynamic stability relative to that of the parent monomer as probed by equilibrium denaturation studies (Delta Delta G(u) = 3.0 +/- 0.5 kcal/mol). Despite such similarities, the alanine analogue is 50 times more active than the serine analogue. Enhanced receptor binding (Delta Delta G = 2.2 kcal/mol) is in accord with alanine's greater helical propensity and more favorable hydrophobic-transfer free energy. The success of an induced-fit model highlights the applicability of general folding principles to a complex binding process. Comparison of DKP[A6-A11](Ser) and DKP[A6-A11](Ala) supports the hypothesis that the native A1-A8 alpha-helix functions as a preformed recognition element tethered by insulin's intrachain disulfide bridge. Segmental unfolding by design provides a novel approach to dissecting structure-activity relationships.  相似文献   

17.
The common glycoprotein hormone alpha-subunit (GPH-alpha) contains five intramolecular disulfide bonds, three of which form a cystine knot motif (10-60, 28-82, and 32-84). By converting each pair of cysteine residues of a given disulfide bond to alanine, we have studied the role of individual disulfide bonds in GPH-alpha folding and have related folding ability to secretion and assembly with the human chorionic gonadotropin beta-subunit (hCG-beta). Mutation of non-cystine knot disulfide bond 7-31, bond 59-87, or both (leaving only the cystine knot) resulted in an efficiently secreted folding form that was indistinguishable from wild type. Conversely, the cystine knot mutants were inefficiently secreted (<25%). Furthermore, mutation of the cystine knot disulfide bonds resulted in multiple folding intermediates containing 1, 2, or 4 disulfide bonds. High performance liquid chromatographic separation of intracellular and secreted forms of the folding intermediates demonstrated that the most folded forms were preferentially secreted and combined with hCG-beta. From these studies we conclude that: (i) the cystine knot of GPH-alpha is necessary and sufficient for folding and (ii) there is a direct correlation between the extent of GPH-alpha folding, its ability to be secreted, and its ability to heterodimerize with hCG-beta.  相似文献   

18.
Wilken JA  Bedows E 《Biochemistry》2004,43(17):5109-5118
The intracellular kinetic folding pathway of the human chorionic gonadotropin beta-subunit (hCG-beta) reveals the presence of a disulfide between Cys residues 38-57 that is not detected by X-ray analysis of secreted hCG-beta. This led us to propose that disulfide rearrangement is an essential feature of cystine knot formation during CG-beta folding. To test this, we used disulfide bond formation to monitor progression of intracellular folding intermediates of a previously uncharacterized protein, the CG-beta subunit of cynomolgous macaque (Macaca fascicularis). Like its human counterpart hCG-beta with which it shares 81% identity, macaque (m)CG-beta is a cystine knot-containing subunit that assembles with an alpha-subunit common to all glycoprotein hormone members of its species to form a biologically active heterodimer, mCG, which, like hCG, is required for pregnancy maintenance. An early mCG-beta folding intermediate, mpbeta1, contained two disulfide bonds, one between Cys34 and Cys88 and the other between Cys38 and Cys57. The subsequent folding intermediate, mpbeta2-early, was represented by an ensemble of folding forms that, in addition to the two disulfides mentioned above, included disulfide linkages between Cys9 and Cys57 and between Cys38 and Cys90. These latter two disulfides are those contained within the beta-subunit cystine knot and reveal that a disulfide exchange occurred during the mpbeta2-early folding step leading to formation of the mCG-beta knot. Thus, while defining the intracellular kinetic protein folding pathway of a monkey homologue of CG-beta, we detected the previously predicted disulfide exchange event crucial for CG-beta cystine knot formation and attainment of CG-beta assembly competence.  相似文献   

19.
The single-chain insulin (PIP) can spontaneously fold into native structure through preferred kinetic intermediates. During refolding, pairing of the first disulfide A20-B19 is highly specific, whereas pairing of the second disulfide is likely random because two two-disulfide intermediates have been trapped. To get more details of pairing property of the second disulfide, four model peptides of possible folding intermediates with two disulfides were prepared by protein engineering, and their properties were analyzed. The four model peptides were named [A20-B19, A7-B7]PIP, [A20-B19, A6-B7]PIP, [A20-B19, A6-A11]PIP, and [A20-B19, A7-A11]PIP according to their remaining disulfides. The four model peptides all adopt partially folded structure with moderate conformational differences. In redox buffer, the disulfides of the model peptides are more easily reduced than those of the wild-type PIP. During in vitro refolding, the reduced model peptides share similar relative folding rates but different folding yields: The refolding efficiency of the reduced [A20-B19, A7-A11]PIP is about threefold lower than that of the other three peptides. The present results indicate that the folding intermediates corresponding to the present model peptides all adopt partially folded conformation, and can be formed during PIP refolding, but the chance of forming the intermediate with disulfide [A20-B19, A7-A11] is much lower than that of forming the other three intermediates.  相似文献   

20.
Factor H, a secretory glycoprotein composed of 20 short consensus repeat modules, is an inhibitor of the complement system. Previous studies of inherited factor H deficiency revealed single amino acid substitutions at conserved cysteine residues, on one allele arginine for cysteine 518 (C518R) and on the other tyrosine for cysteine 941 (C941Y) (Ault, B. H., Schmidt, B. Z., Fowler, N. L., Kashtan, C. E., Ahmed, A. E., Vogt, B. A., and Colten, H. R. (1997) J. Biol. Chem. 272, 25168-25175). To ascertain if the phenotype, impaired secretion of factor H, is due to the C518R substitution or the C941Y substitution and to ascertain the mechanism by which secretion is impaired, we studied COS-1 and HepG2 cells transfected with wild type and several mutant factor H molecules. The results showed markedly impaired secretion of both C518R and C941Y factor H as well as that of factor H molecules bearing alanine or arginine substitutions at the Cys518-Cys546 disulfide bond (C518A, C546A, C546R, C518A-C546A). In each case, mutant factor H was retained in the endoplasmic reticulum and degraded relatively slowly as compared with most other mutant secretory and membrane proteins that are retained in the endoplasmic reticulum. These data indicate that impaired secretion of the naturally occurring C518R and C941Y mutant factor H proteins is due to disruption of framework-specific disulfide bonds in factor H short consensus repeat modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号