首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A whole cell Renibacterium salmoninarum vaccine was developed using 37 degrees C heat treated cells that were subsequently formalin fixed; this treatment reduced bacterial hydrophobicity and cell associated p57. Coho salmon Oncorhynchus kisutch were immunized with the p57- vaccine by either a combination of intraperitoneal (i.p.) and intramuscular (i.m.) injections or per os. In the first experiment, i.p./i.m. vaccination of coho salmon with p57- cells in Freund's Incomplete Adjuvant (FIA) conferred a statistically significant increase in mean time to death after the salmon were i.p. challenged with 4.1 x 10(6) colony forming units (cfu) of R. salmoninarum. There was no significant difference in response between fish immunized with R. salmoninarum cell surface extract in FIA and those immunized with extracellular protein (ECP) concentrated from culture supernatant in FIA. The i.p. challenge dose resulted in complete mortality of all fish by Day 43. In a second experiment, fish were orally vaccinated with p57- R. salmoninarum cells encased in a pH protected, enteric-coated antigen microsphere (ECAM). Fish were bath challenged with 4.2 x 10(6) cfu ml-1 on Day 0 and sampled at time points of 0 (pre-challenge), 50, 90, or 150 d immersion challenge. Vaccine efficacy was determined by monitoring the elaboration of p57 in the kidneys of vaccinated and control fish. Fish vaccinated orally demonstrated a significantly lower concentration of p57 (p < 0.01) at Day 150 post challenge compared to fish receiving ECAMs alone. Fish receiving p57 cells without ECAM coating also showed a significantly lower p57 level (p < 0.03) versus control. In contrast, fish injected intraperitoneally with the p57- cells or fish fed p57+ R. salmoninarum cells in ECAMs demonstrated no significant difference (p > 0.05) versus controls. In summary, these studies suggest the preliminary efficacy of 37 degrees C treatment of R. salmoninarum cells as an oral bacterial kidney disease vaccine.  相似文献   

2.
The gram-positive bacterium Renibacterium salmoninarum produces relatively large amounts of a 57-kDa protein (p57) implicated in the pathogenesis of salmonid bacterial kidney disease. Antigenic variation in p57 was identified by using monoclonal antibody 4C11, which exhibited severely decreased binding to R. salmoninarum strain 684 p57 and bound robustly to the p57 proteins of seven other R. salmoninarum strains. This difference in binding was not due to alterations in p57 synthesis, secretion, or bacterial cell association. The molecular basis of the 4C11 epitope loss was determined by amplifying and sequencing the two identical genes encoding p57, msa1 and msa2. The 5' and coding sequences of the 684 msa1 and msa2 genes were identical to those of the ATCC 33209 msa1 and msa2 genes except for a single C-to-A nucleotide mutation. This mutation was identified in both the msa1 and msa2 genes of strain 684 and resulted in an Ala(139)-to-Glu substitution in the amino-terminal region of p57. We examined whether this mutation in p57 altered salmonid leukocyte and rabbit erythrocyte binding activities. R. salmoninarum strain 684 extracellular protein exhibited a twofold increase in agglutinating activity for chinook salmon leukocytes and rabbit erythrocytes compared to the activity of the ATCC 33209 extracellular protein. A specific and quantitative p57 binding assay confirmed the increased binding activity of 684 p57. Monoclonal antibody 4C11 blocked the agglutinating activity of the ATCC 33209 extracellular protein but not the agglutinating activity of the 684 extracellular protein. These results indicate that the Ala139-to-Glu substitution altered immune recognition and was associated with enhanced biological activity of R. salmoninarum 684 p57.  相似文献   

3.
The relative efficacies of 1 commercial and 5 experimental vaccines for bacterial kidney disease (BKD) were compared through a cohabitation waterborne challenge. Groups of juvenile chinook salmon Oncorhynchus tshawytscha were vaccinated with one of the following: (1) killed Renibacterium salmoninarum ATCC 33209 (Rs 33209) cells; (2) killed Rs 33209 cells which had been heated to 37 degrees C for 48 h, a process that destroys the p57 protein; (3) killed R. salmoninarum MT239 (Rs MT239) cells; (4) heated Rs MT239 cells; (5) a recombinant version of the p57 protein (r-p57) emulsified in Freund's incomplete adjuvant (FIA); (6) the commercial BKD vaccine Renogen; (7) phosphate-buffered saline (PBS) emulsified with an equal volume of FIA; or (8) PBS alone. Following injection, each fish was marked with a subcutaneous fluorescent latex tag denoting its treatment group and the vaccinated fish were combined into sham and disease challenge tanks. Two weeks after these fish were vaccinated, separate groups of fish were injected with either PBS or live R. salmoninarum GL64 and were placed inside coated-wire mesh cylinders (liveboxes) in the sham and disease challenge tanks, respectively. Mortalities in both tanks were recorded for 285 d. Any mortalities among the livebox fish were replaced with an appropriate cohort (infected with R. salmoninarum or healthy) fish. None of the bacterins evaluated in this study induced protective immunity against the R. salmoninarum shed from the infected livebox fish. The percentage survival within the test groups in the R. salmoninarum challenge tank ranged from 59% (heated Rs MT239 bacterin) to 81% (PBS emulsified with FIA). There were no differences in the percentage survival among the PBS-, PBS/FIA-, r-p57- and Renogen-injected groups. There also were no differences in survival among the bacterin groups, regardless of whether the bacterial cells had been heated or left untreated prior to injection.  相似文献   

4.
Renibacterium salmoninarum is a gram-positive bacterium that causes bacterial kidney disease in salmonid fish. The virulence mechanisms of R. salmoninarum are not well understood. Production of a 57-kDa protein (p57) has been associated with isolate virulence and is a diagnostic marker for R. salmoninarum infection. Biological activities of p57 include binding to eukaryotic cells and immunosuppression. We previously isolated three monoclonal antibodies (4D3, 4C11, and 4H8) that neutralize p57 activity. These monoclonal antibodies (MAbs) bind to the amino-terminal region of p57 between amino acids 32 though 243; however, the precise locations of the neutralizing epitopes were not determined. Here, we use transposon mutagenesis to map the 4D3, 4C11, and 4H8 epitopes. Forty-five transposon mutants were generated and overexpressed in Escherichia coli BL21(DE3). The ability of MAbs 4D3, 4H8, and 4C11 to bind each mutant protein was assessed by immunoblotting. Transposons inserting between amino acids 51 and 112 disrupted the 4H8 epitope. Insertions between residues 78 and 210 disrupted the 4C11 epitope, while insertions between amino acids 158 and 234 disrupted the 4D3 epitope. The three MAbs failed to bind overlapping, 15-mer peptides spanning these regions, suggesting that the epitopes are discontinuous in conformation. We conclude that recognition of secondary structure on the amino terminus of p57 is important for neutralization. The epitope mapping studies suggest directions for improvement of MAb-based immunoassays for detection of R. salmoninarum-infected fish.  相似文献   

5.
The influence of medium and salinity on the cell surface hydrophobicity of Renibacterium salmoninarum was investigated using three different methods: bacterial adherence to hydrocarbons (BATH), salt agglutination test (SAT), and binding to nitrocellulose filters (NCF). The possible relationship among hydrophobicity, haemagglutination and adherence to cell lines was also evaluated. R. salmoninarum showed to be highly hydrophobic regardless of the growth conditions or technique employed. Nevertheless, slight differences can be detected depending on the method used. In the SAT and NCF assays very uniform values were obtained within the strains. All the R. salmoninarum isolates agglutinated in (NH4)2SO4 in a range of 0.05-0.2 M and displayed a 77-100% of adherence to nitrocellulose filters. However, more variable results were observed in the BATH method depending on the hydrocarbon, buffer and strain employed. Although all of the isolates produced haemagglutinins for homeotherm erythrocytes, the majority of them failed to agglutinate poikilothermic red blood cells and were unable to adhere to fish cell lines. Therefore, a general correlation among hydrophobicity, agglutinating capacity for fish erythrocytes and adherence to fish cells can not be established for R. salmoninarum.  相似文献   

6.
DNA adjuvants and whole bacterial cell vaccines against bacterial kidney disease (BKD) were tested in juvenile chinook salmon. Whole cell vaccines of either a nonpathogenic Arthrobacter spp. or an attenuated Renibacterium salmoninarum strain provided limited prophylactic protection against acute intraperitoneal challenge with virulent R. salmoninarum, and the addition of either synthetic oligodeoxynucleotides or purified R. salmoninarum genomic DNA as adjuvants did not increase protection. However, a combination of both whole cell vaccines significantly increased survival among fish naturally infected with R. salmoninarum, and the surviving fish treated with the combination vaccine exhibited reduced levels of bacterial antigens in the kidney. This is the first demonstration of a potential therapeutic effect of a whole cell vaccine against BKD.  相似文献   

7.
Renibacterium salmoninarum, the agent of bacterial kidney disease in salmonids, releases high concentrations of extracellular protein in tissues of infected fish. The extracellular protein consists almost entirely of a 57-kDa protein and derivatives of degradation and aggregation of the same molecule. The 57-kDa protein and its derivatives were fractionated into defined ranges of molecular mass. Separated fractions continued to produce degradation and aggregation products. One-dimensional electrophoretic separation of extracellular protein revealed a number of proteolytically active bands from > 100 to approximately 18 kDa associated with various 57-kDa protein derivatives in the different molecular mass fractions. Two-dimensional separation of extracellular protein showed that continued degradation and aggregation, similar both in location and behavior to some of the 57-kDa protein derivatives, was also displayed by the proteolytically active bands after their separation. Effects of reducing agents and sulfhydryl group proteinase inhibitors indicated a common mechanism for the proteolytically active polypeptides characteristic of a thiol proteinase. The results suggested that the 57-kDa protein and some of its derivatives undergo autolytic cleavage, releasing a proteolytically active polypeptide(s) of at least 18 kDa. Soluble polysaccharide-like material also was detected in extracellular products and tissue from infected fish. Antiserum to the polysaccharide-like material cross-reacted with O-polysaccharide of the fish pathogen Aeromonas salmonicida, suggesting some structural similarity between these polysaccharides. The polysaccharide and the proteolytic activity associated with the 57-kDa protein derivatives should be investigated with respect to the pathogenesis of R. salmoninarum infections.  相似文献   

8.
9.
A loop-mediated isothermal amplification (LAMP) assay was developed for rapid, specific and sensitive detection of Renibacterium salmoninarum in 1 h without thermal cycling. A fragment of R. salmoninarum p57 gene was amplified at 63 degrees C in the presence of Bst polymerase and a specially designed primer mixture. The specificity of the BKD-LAMP assay was demonstrated by the absence of any cross reaction with other bacterial strains, followed by restriction digestion of the amplified products. Detections of BKD-LAMP amplicons by visual inspection, agrose gel electrophoresis, and real-time monitoring using a turbidimeter were equivalently sensitive. The BKD-LAMP assay has the sensitivity of the nested PCR method, and 10 times the sensitivity of one-round PCR assay. The lower detection limit of BKD-LAMP and nested PCR is 1 pg genomic R. salmoninarum DNA, compared to 10 pg genomic R. salmoninarum DNA for one-round PCR assay. In comparison to other available diagnostic methods, the BKD-LAMP assay is rapid, simple, sensitive, specific, and cost effective with a high potential for field application.  相似文献   

10.
Abstract By means of a one-step one-tube extraction from less than 1 mg of tissue it is possible to identify, via the polymerase chain reaction, Renibacterium salmoninarum in salmon with bacterial kidney disease. A 149-bp DNA sequence unique to R salmoninarum was specifically amplified and its nature confirmed by Southern hybridization using a non-isotopically labelled probe. The sensitivity of the approach allowed the detection of 22 R. salmoninarum cells. The procedure was successfully applied in the identification of the causative agent of bacterial kidney disease in kidney tissue from infected fishes.  相似文献   

11.
Renibacterium salmoninarum, the causative agent of bacterial kidney disease in salmonid fishes, is a Gram-positive diplococcobacillus belonging to the family Micrococcaceae. Analysis of the genome sequence of the bacterium demonstrated the presence of a sortase homolog (srtD), a gene specifying an enzyme found in Gram-positive bacteria and required for covalent anchoring of cell surface proteins. Interference of sortase activity is being examined as a target for therapeutic prevention of infection by several pathogenic Gram-positive bacterial species. In silico analysis identified 8 open reading frames containing sortase recognition motifs, suggesting these proteins are translocated to the bacterial cell wall. The sortase and potential sortase substrate genes are transcribed in R. salmoninarum, suggesting they encode functional proteins. Treatment of R. salmoninarum with phenyl vinyl sulfone (PVS) significantly reduced bacterial adherence to Chinook salmon fibronectin. In addition, the ability of the PVS-treated bacteria to adhere to Chinook salmon embryo cells (CHSE-214) in vitro was dramatically reduced compared to that of untreated bacteria. More importantly, PVS-treated bacteria were unable to invade and replicate within CHSE-214 cells (demonstrated by an intracellular growth assay and by light microscopy). When treated with PVS, R. salmoninarum was not cytopathic to CHSE-214 cells, whereas untreated bacteria produced cytopathology within a few days. These findings clearly show that PVS, a small molecule drug and a known sortase inhibitor, can interfere with the ability of R. salmoninarum to adhere and colonize fish cells, with a corresponding decrease in virulence.  相似文献   

12.
Renibacterium salmoninarum is a gram-positive bacterium responsible for bacterial kidney disease of salmon and trout. R. salmoninarum has two identical copies of the gene encoding major soluble antigen (MSA), an immunodominant, extracellular protein. To determine whether one or both copies of msa are expressed, reporter plasmids encoding a fusion of MSA and green fluorescent protein controlled by 0.6 kb of promoter region from msa1 or msa2 were constructed and introduced into R. salmoninarum. Single copies of the reporter plasmids integrated into the chromosome by homologous recombination. Expression of mRNA and protein from the integrated plasmids was detected, and transformed cells were fluorescent, demonstrating that both msa1 and msa2 are expressed under in vitro conditions. This is the first report of successful transformation and homologous recombination in R. salmoninarum.  相似文献   

13.
14.
The hydrophobicity of the bacterial cell surface was determined by using nonionic surfactants. The method is based on the adsorption of nonionic surfactants at the hydrophobic sites of the cell surface. Among many nonionic surfactants, C18H37O(CH2CH2O)13H was preferred. The surfactant was added in excess to a bacterial suspension, and the suspension was mixed by sonication or mechanical stirring. The amount of surfactant remaining in the supernatant after centrifugation was determined spectrophotometrically by measuring the absorbance of tetrabromophenolphthalein ethylester. Effective dispersion of bacterial cells such as Staphylococcus aureus and Mycobacterium smegmatis was achieved by sonication in the presence of the nonionic surfactant. Adsorption measurements coincided with Langmuir's equation, indicative of monolayer adsorption. The method is useful for the determination of the hydrophobicity of various bacterial cell surfaces.  相似文献   

15.
We have examined the internalization and degradation of a fluorescent analog of phosphatidylcholine after its insertion into the plasma membrane of cultured Chinese hamster fibroblasts. 1-acyl-2-(N-4- nitrobenzo-2-oxa-1,3-diazole)-aminocaproyl phosphatidylcholine (C6-NBD- PC) was incorporated into the cell surface by liposome-cell lipid transfer at 2 degrees C. The fluorescent lipid remained localized at the plasma membrane as long as the cells were kept at 2 degrees C; however, when the cells were warmed to 37 degrees C, internalization of some of the fluorescent lipid occurred. Most of the internalized C6-NBD- PC accumulated in the Golgi apparatus although a small amount was found randomly distributed throughout the cytoplasm in punctate fluorescent structures. Internalization of the fluorescent lipid at 37 degrees C was blocked by the presence of inhibitors of endocytosis. Incubation of cells containing C6-NBD-PC at 37 degrees C resulted in a rapid degradation of the fluorescent lipid. This degradation occurred predominantly at the plasma membrane. The degradation of C6-NBD-PC resulted in the release of NBD-fatty acid into the medium. We have compared the internalization of the fluorescent lipid with that of a fluorescent protein bound to the cell surface. Both fluorescent lipid and protein remained at the plasma membrane at 2 degrees C and neither were internalized at 37 degrees C in the presence of inhibitors of endocytosis. However, when incubated at 37 degrees C under conditions that permit endocytosis, the two fluorescent species appeared at different intracellular sites. Our data suggest that there is no transmembrane movement of C6-NBD-PC and that the fluorescent probe reflects the internalization of the outer leaflet of the plasma membrane lipid bilayer. The results are consistent with the Golgi apparatus as being the primary delivery site of phospholipid by bulk membrane movement from the plasma membrane.  相似文献   

16.
Renibacterium salmoninarum, the causative agent of bacterial kidney disease, produces large quantities of a 57-58 kDa protein (p57) during growth in broth culture and during infection of salmonid fish. Biological activities of secreted p57 include agglutination of salmonid leucocytes and rabbit erythrocytes. We define the location of epitopes on p57 recognized by agglutination-blocking monoclonal antibodies (MAbs) 4C11, 4H8 and 4D3, and demonstrate that the majority of secreted p57 is a monomer that retains salmonid leucocyte agglutinating activity. The 3 MAbs bound a recombinant, amino-terminal fragment of p57 (211 aa) but not a carboxy-terminal fragment (315 aa) demonstrating that the neutralizing epitopes are located within the amino-terminal portion of p57. When combinations of the MAbs were used in an antigen capture ELISA, the epitopes recognized by the 3 MAbs were shown to be sterically separate. However, when the same MAb was used as both the coating and detection MAb, binding of the biotinylated detection MAb was not observed. These data indicate that the epitopes recognized by the 3 agglutination-blocking antibodies are functionally available only once per molecule and that native p57 exists as a monomer. Similar ELISA results were obtained when kidney tissues from 3 naturally infected chinook salmon were assayed. Finally, a p57 monomer was purified using anion exchange and size exclusion chromatography that retained in vitro agglutinating activity. A model in which p57 is released from R. salmoninarum as a biologically active monomer during infection of salmonid fish is proposed.  相似文献   

17.
Renibacterium salmoninarum was shown to possess peritrichous fimbriae. Electron microscopy of strains FMV 84-01 and ATCC 33209T revealed short, flexible fimbriae less than 2 nm in diameter. These surface appendages were isolated from the bacteria by a procedure involving water extraction and urea solubilization. The fimbrin was purified to homogeneity by Fast Pressure Liquid Chromatography, and shown by SDS-PAGE to be a protein of 57 kDa. Isoelectric focusing under non-denaturing conditions indicated a pI of 4.8. The protein had an amino acid composition rich in glycine, Asx (aspartic acid and asparagine), valine and alanine; methionine was absent. Approximately 33% of the amino acid residues were hydrophobic. Immunoblotting using a polyclonal antiserum raised against whole cells showed that the 57 kDa protein was the immunodominant antigen on the cell surface. Immunogold labelling using polyclonal antibodies raised against the fimbrin revealed an alignment of gold particles along the fimbriae. Purified fimbriae caused agglutination of rabbit erythrocytes and antifimbrial serum inhibited this haemagglutination. Altogether the results indicate that the fimbriae on the surface of R. salmoninarum are responsible for the haemagglutinating activity.  相似文献   

18.
The relationships among surface energy, adsorbed organic matter, and attached bacterial growth were examined by measuring the degradation of adsorbed ribulose-1,5-bisphosphate carboxylase (a common algal protein) by attached bacteria (Pseudomonas strain S9). We found that surface energy (work of adhesion of water) determined the amount and availability of adsorbed protein and, consequently, the growth of attached bacteria. Percent degradation of adsorbed ribulose-1,5-bisphosphate carboxylase decreased with increasing hydrophobicity of the surface (decreasing work of adhesion). As a result, growth rates of attached bacteria were initially higher on hydrophilic glass than on hydrophobic polyethylene. However, during long (6-h) incubations, growth rates increased with surface hydrophobicity because of increasing amounts of adsorbed protein. Together with previous studies, these results suggest that the number of attached bacteria over time will be a complex function of surface energy. Whereas both protein adsorption and bacterial attachment decrease with increasing surface energy, availability of adsorbed protein and consequently initial bacterial growth rates increase with surface energy.  相似文献   

19.
The laboratory conditions for reproducible routine determination of staphylococcal cell-surface hydrophobicity by the salt aggregation test were standardized. Fresh bacterial suspensions standardized to 5 x 10(9) cfu/ml gave the most reproducible results with both Staphylococcus aureus and coagulase-negative staphylococci. For relatively hydrophobic strains a 5-min reading time was necessary to detect bacterial aggregation in ammonium sulphate solutions ranging from 0.1 M to 1.5 M, pH 6.8. A x 10 hand lens facilitated reading aggregations. Overnight storage of bacterial suspensions at 20 degrees C reduced cell-surface hydrophobicity of all species, while storage at 4 degrees C reduced the hydrophobic nature of Staph. aureus strains. The hydrophobicity of coagulase-negative staphylococci rarely changed at 4 degrees C. A 10-fold dilution of fresh, standardized bacterial suspensions made it impossible to detect bacterial aggregation in ammonium sulphate solutions even with a hand lens. Under standardized conditions three types of staphylococcal cell aggregations were observed. The first looked like the slide agglutination for O antigens of Enterobacteriaceae, the second resembled H-agglutination, while the third had a filamentous appearance. These patterns indicated that more than one component might contribute to cell-surface hydrophobicity of both Staph. aureus and coagulase-negative staphylococci, or the same component might have different position on the cell surface.  相似文献   

20.
Renibacterium salmoninarum is a pathogen of salmonid fish that produces large amounts of extracellular protein (ECP) during growth. A proteolytic activity present in ECP at elevated temperatures digested the majority of the proteins in ECP. This digestion was also associated with the loss of ECP immunosuppressive function. In vitro activity of the proteinase in ECP was temperature dependent: it was not detected in an 18-h digest at 4 and 17 degrees C but became readily apparent at 37 degrees C. Proteinase activity was detected at bacterial physiological temperatures (17 degrees C) in reactions incubated for several days. Under these conditions, digestion of partially purified p57, a major constituent of ECP and a major cell-surface protein, yielded a spectrum of breakdown products similar in molecular weight and antigenicity to those in ECP. This pattern of digestion suggests that most of the immunologically related constituents of ECP are p57 and its breakdown products. The proteolytic activity was sensitive to phenylmethylsulfonyl fluoride, methanol, and ethanol and to 10-min incubation at temperatures above 65 degrees C. Electrophoretic analysis of the proteinase on polyacrylamide gels containing proteinase substrates indicated the native form to be 100 kDa or greater. The enzyme was active against selected unrelated substrates only when coincubated with a denaturant (0.1% lauryl sulfate) and (or) a reducing agent (20 mM dithiothreitol).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号