首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of preformation and neoformation and the structure of winter buds are vegetative attributes that may vary between plant species and according to ontogenetic stages of the same species. The present study describes and evaluates these features for the four tree species of Proteaceae occurring in Patagonia. In particular, it analyzes the structure and development of the distal buds of the trunk and the preformed or neoformed nature of the organs involved. Two of the species, Embothrium coccineum and Lomatia hirsuta, have scaly buds, in which primordia of green leaves are covered by cataphylls. The shoots of both species may include neoformed organs, more frequently so in juvenile trees. Lomatia ferruginea and Gevuina avellana have naked buds with a low number of primordia; in juvenile and adult trees of both species trunk shoots are entirely preformed. The structure of buds and shoots suggests two different growth modalities of the axes, which would be related to ecological breadth (narrower in the species with naked buds than in those with scaly buds) and distribution area of these species. The considerable morphological differences between the two Lomatia species studied raise the question whether they ought to be included in the same genus.  相似文献   

2.
Buds of shoots from the trunk, main branches, secondary branchesand short branches of 10–21 year-old Nothofagus pumiliotrees were dissected and their contents recorded. The numberof differentiated nodes in buds was compared with the numberof nodes of sibling shoots developed at equivalent positionsduring the following growing season. Axillary buds generallyhad four cataphylls, irrespective of bud position in the tree,whereas terminal buds had up to two cataphylls. There were morenodes in terminal buds, and the most distal axillary buds, oftrunk shoots than in more proximal buds of trunk shoots, andin all buds of shoots at all other positions. The highest numberof nodes in the embryonic shoot of a bud varied between 15 and20. All shoots had proximal lateral buds containing an embryonicshoot with seven nodes, four with cataphylls and three withgreen leaf primordia. The largest trunk, and main branch, shootswere made up of a preformed portion and a neoformed portion;all other shoots were entirely preformed. In N. pumilio, theacropetally-increasing size of the sibling shoots derived froma particular parent shoot resulted from differences in: (1)the number of differentiated organs in the buds; (2) the probabilityof differentiation of additional organs during sibling shootextension; (3) sibling shoot length; (4) sibling shoot diameter;and (5) the death of the apex and the most distal leaves ofeach sibling shoot. Copyright 2000 Annals of Botany Company Axis differentiation, branching, bud structure, leaf primordia, neoformation, Nothofagus pumilio, preformation, size gradient  相似文献   

3.
In temperate trees, axis length growth generally results from the differentiation of organs at the end of a growing season and the extension of such "preformed organs" in the next growing season. Neoformation, i.e., the simultaneous differentiation and extension of organs, has been studied for only a few species. Here we evaluated bud composition and growth unit (GU) size for seedlings and saplings of Nothofagus alpina, a valuable South American forest tree. Trunk GUs of seedlings and saplings included preformed and neoformed organs, whereas main-branch GUs of saplings were entirely preformed. The size of a GU was more closely related to the number of preformed green leaves than to the number of cataphylls of its preceding bud. Proximal buds of a trunk GU had more cataphylls and less green-leaf primordia than distal buds. Individual leaf area increased from proximal to distal positions on trunk GUs. For trunk and main-branch GUs, the length/width ratio was maximum for leaves in intermediate positions. The development of large neoformed leaves at the end of the growing season could increase the photosynthetic capacity of this species in late summer, when the activity of preformed organs is likely to be decreasing.  相似文献   

4.
Summary Shoot systems developed over 3 successive years were investigated on 55 understorey Tsuga canadensis (L.) Carr. trees. Paired comparisons of preformed-leaf content of terminal buds and numbers of leaves produced on new shoots showed that neoformed leaves were produced in large numbers. Parent-shoot character was not useful in predicting numbers of preformed leaves, was better related to total leaves produced, but left the majority of the variation unexplained. This reflected the capacity of any terminal bud to produce a shoot with more or less neoformation, depending on conditions for growth. All shoots over 6 cm long produced sylleptic shoots that bore from two to many leaves and were arranged in a mesitonic pattern along the parent. Some of the longer sylleptic shoots produced lateral buds or second-order sylleptic shoots. Monopodial second-year extensions of sylleptic-shoot axes followed an acrotonic pattern, as did proleptic shoots from the few lateral buds borne on the parent shoots. Such lateral buds were more frequent on shorter parent shoots: they typically occurred near the proximal and distal ends. Duration of shoot extension was positively correlated with shoot length: terminal buds became evident as shoot extension neared cessation.  相似文献   

5.
The organogenetic cycle of main-branch shoots of Nothofagus dombeyi (Nothofagaceae) was studied. Twelve samples of 52-59 parent shoots were collected from a roadside population between September 1999 and October 2000. Variations over time in the number of nodes of terminal and axillary buds, and the length, diameter and number of leaves of shoots derived from these buds (sibling shoots) were analysed. The number of nodes of buds developed by parent shoots was compared with the number of nodes of buds developed, I year later, by sibling shoots. The length, diameter and number of leaves of sibling shoots increased from October 1999 to February 2000 in those shoots with a terminal bud. However, extension of most sibling shoots, including the first five most distal leaf primordia, ceased before February due to abscission of the shoot apex. Axillary buds located most distally on a shoot had more nodes than both terminal buds and more proximal axillary buds. The longest shoots included a preformed part and a neoformed part. The organogenetic event which initiated the neoformed organs continued until early autumn, giving rise to the following year's preformation. The absence of cataphylls in terminal buds could indicate a low intensity of shoot rest. The naked terminal bud of Nothofagus spp. could be interpreted as a structure less specialized than the scaled bud found in genera of Fagaceae and Betulaceae.  相似文献   

6.
Summary Four clones of Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern. were planted in replicated trials at two sites in Manitoba (Morden and Winnipeg) to investigate shoot growth and leaf neoformation in relation to genotype, environment and pruning treatment over a 3 year period. Significant differences were found among clones, years and sites for shoot length and numbers of neoformed leaves. Neoformation was highest shortly after transplanting and then declined. An increase in neoformation was evident following cold related winter injury or loss of terminal buds by late spring frosts. Pruning and terminal bud removal treatments both increased neoformed leaf production relative to control trees. The trees were able to quickly re-establish photosynthetic surface area after injury or treatment and neoformed leaf production was an important component in this recovery strategy. The capacity for neoformation also varied in relation to genotype but appeared to be very plastic, being affected by a wide variety of factors. In addition, the rate or pattern of change in amounts of neoformed leaves over time and locations was variable. Numbers of neoformed leaves increased with shoot length but variation in the relationship suggested that there were differences in internode length as well. Neoformed leaves were highest in the upper part of the crown indicating that there was differential allocation of resources within the crown.  相似文献   

7.
8.
The size (length and diameter) and number of leaf primordia of winter buds of Nothofagus antarctica (G. Forster) Oerst. shrubs were compared with the size and number of leaves of shoots derived from buds in equivalent positions. Buds developed in two successive years were compared in terms of size and number of leaf primordia. Bud size and the number of leaf primordia per bud were greater for distal than for proximally positioned buds. Shoots that developed in the five positions closest to the distal end of their parent shoots had significantly more leaves than more proximally positioned shoots of the same parent shoots. The positive relationship between the size of a shoot and that of its parent shoot was stronger for proximal than for distal positions on the parent shoots. For each bud position on the parent shoots there were differences in the number of leaf primordia per bud between consecutive years. The correlations between the number of leaf primordia per bud and bud size, bud position and parent shoot size varied between years. Only shoots produced close to the distal end of a parent shoot developed neoformed leaves; more proximal sibling shoots consisted entirely of preformed leaves. Leaf neoformation, a process usually linked with high shoot vigour in woody plants, seems to be widespread among the relatively small shoots developed in N. antarctica shrubs, which may relate to the species' opportunistic response to disturbance.  相似文献   

9.
The numbers of nodes on single flush terminal and axillary shootmodules were determined in a range of Persea species and cultivars.They were compared with node numbers in apical and axillarybuds to investigate whether preformation or neoformation ofnodes occurred. Mean number of nodes on terminal shoots was14 for vegetative shoot modules and 21 for reproductive shootmodules, and was similar across species, cultivars, rootstocks,locations and climates. In the cultivar 'Hass', numbers of nodeson axillary shoot modules were variable, and lower than thosefor primary shoot modules forming the dominant growth axis ofannual growth modules. There was a mean of 12 nodes for vegetativeproleptic shoot modules, 15 for reproductive proleptic shootmodules and six for sylleptic shoot modules, which were invariablyvegetative. All nodes were preformed within both apical andaxillary proleptic buds. This was not the case in syllepticbuds, which burst contemporaneously with extension of the parentaxis. The majority (63%) of reproductive buds formed indeterminatecompound inflorescences. They carried six basal bud scales,six axillary inflorescences and their subtending bracts, andup to nine true leaves.Copyright 1994, 1999 Academic Press Persea Clus., avocado, Persea americana Mill., bud morphology, shoot growth, preformation, prolepsis  相似文献   

10.
BACKGROUND AND AIMS: Plants have complex mechanisms of aerial biomass exposition, which depend on bud composition, the period of the year in which shoot extension occurs, branching pattern, foliage persistence, herbivory and environmental conditions. METHODS: The influence of water availability and temperature on shoot growth, the bud composition, the leaf phenology, and the relationship between partial leaf fall and branching were evaluated over 3 years in Cerrado woody species Bauhinia rufa (BR), Leandra lacunosa (LL) and Miconia albicans (MA). KEY RESULTS: Deciduous BR preformed organs in buds and leaves flush synchronously at the transition from the dry to the wet season. The expansion time of leaves is <1 month. Main shoots (first-order axis, A1 shoots) extended over 30 d and they did not branch. BR budding and foliage unfolds were brought about independently of inter-annual rainfall variations. By contrast, in LL and MA evergreen species, the shoot extension rate and the neoformation of aerial organs depended on rainfall. Leaf emergence was continuous for 2-6 months and lamina expansion took place over 1-4 months. The leaf life span was 5-20 months and the main A1 shoot extension happened over 122-177 d. Both evergreen species allocated biomass to shoots, leaves or flowers continuously during the year, branching in the middle of the wet season to form second-order (A2 shoots) and third-order (A3 shoots) axis in LL and A2 shoots in MA. Partial shed of A1 shoot leaves would facilitate a higher branching intensity A2 shoot production in LL than in MA. MA presented a longer leaf life span, produced a lower percentage of A2 shoots but had a higher meristem persistence on A1 and A2 shoots than LL. CONCLUSIONS: It was possible to identify different patterns of aerial growth in Cerrado woody species defined by shoot-linked traits such as branching pattern, bud composition, meristem persistence and leaf phenology. These related traits must be considered over and above leaf deciduousness for searching functional guilds in a Cerrado woody community. For the first time a relationship between bud composition, shoot growth and leaf production pattern is found in savanna woody plants.  相似文献   

11.
Summary Pattern of change in leaf character was assessed along the length and around the circumference of Tsuga canadensis (L.) Carr. shoots of different length classes. Leaf size decreased, and number of leaves per unit length of shoot increased, with decrease in shoot length. Acropetally along the shoots, lamina length and width decreased, relative petiole length increased, apices became more pointed, and leaf margins bore more teeth. Around the shoot, from upper to side, and to lower surfaces, leaf size and number of marginal teeth in the proximal halves of leaves increased. These patterns were related both to production of preformed versus neoformed leaves, though their separation was indistinct, and to secondary orientation of leaves by twisting in their petiolar regions into two major bi-lateral ranks. An additional minor rank occurred along the upper surfaces of the shoots where secondary orientation of the leaves was minimal. Surface features of leaves did not differ in any obvious manner. Leaves on sylleptic shoots, which by definition were all neoformed, exhibited similar patterns, but were generally smaller than those on their parent shoots.  相似文献   

12.
Developmental preformation can constrain growth responses of shoots to current conditions, but there is potential for flexibility in development preceding formation of the preformed organs. Mayapple (Podophyllum peltatum) is strongly heteroblastic, producing rhizome scales, bud scales, and either a single vegetative foliage leaf or two foliage leaves on a sexual shoot. To understand how and when preformation constrains growth responses, we compare (1) how leaf homologs of the renewal shoot differ in development, (2) whether there are differences in shoot development that occur in advance of morphological determination of shoot type, and (3) whether there are points of developmental flexibility in renewal shoot growth prior to preformation of the foliage and floral organs. We use scanning electron microscopy and histology to show that the three vegetative leaves (both types of scale leaves and the vegetative foliage leaf) are similar in the initial establishment of an encircling and overarching leaf base. Differences among them are found in the timing of differentiation of the leaf base and in the relative timing and degree of growth of the lamina and petiole. In contrast, foliage leaves on sexual shoots show less expression of the leaf base and precocious growth of the lamina and petiole. Prior to shoot type determination, there are no morphological differences in the sequence or position of leaf homologs that predict final shoot type. In this colony, leaves at positions 12 and 13, on average, appear to be identical in development until they are between 700 and 800 μm in length, when it becomes possible to distinguish leaves that will become vegetative foliage leaves from additional bud scale leaves on vegetative or sexual shoots. We suggest that late developmental determination of leaves at positions 12 and 13 reflects ontogenetic sensitivity to a transition to flowering. Thus, in mayapple, heteroblasty appears to facilitate developmental flexibility prior to the point where shoot growth becomes constrained by preformation of determined aerial structures.  相似文献   

13.
The organogenetic cycle of shoots on main branches of 4-year-old Juglans regia trees was studied. Mono- and bicyclic floriferous and vegetative annual shoots were analysed. Five parent annual shoot types were sampled between October 1992 and August 1993. Organogenesis of summer growth units was monitored between 16 Jun. and 3 Aug. 1993. Variations over time in the number of nodes, cataphylls and embryonic green leaves of terminal buds were studied. The number of nodes of parent shoot buds was compared with the number of nodes of shoots derived from parent shoot buds. The spring growth units of mono- and bicyclic shoots consist exclusively of preformed leaves which were differentiated, respectively, during the spring flush of growth (mid-April until mid-May) or the summer flush of growth (mid-June until early August) in the previous growing season. Thus, winter buds may consist of flower and leaf primordia differentiated in two different periods during annual shoot extension. The summer growth units of bicyclic shoots consist of preformed leaves that were differentiated in spring buds during the spring flush of growth in the current growing season. Bud morphology is compared between spring and summer shoots.  相似文献   

14.
Architectural analysis was applied to study branch development of 'Royal Gala' apple trees grafted with dwarfing and non-dwarfing rootstock/interstock combinations, which had been chosen to produce trees with a wide range of vigour. Using AMAPmod methodology, the structure of 3-year-old branches was described at four levels of representation: branch; annual shoot; growth unit; and node. Three types of growth units were distinguished: extension growth unit (vegetative unit with internode extension); vegetative spur with minimal internode extension; and fruiting spur or bourse. The aim of the analysis was to describe exactly how the rootstock/interstock combinations affected the structure building process. The number of extension growth units, vegetative spurs and fruiting spurs per annual shoot changed over the years, but this was not affected by rootstock/interstock combination. Compared with MM.106 rootstock, M.9 rootstock reduced the number of nodes per extension growth unit. In most cases, rootstock/interstock combination had no effect on the linear relationship between extension growth unit length and node number (R(2) = 0.88). Average internode length depended on unit node number, with internodes being shorter for units with fewer nodes. Thus the difference in apple branch size induced by the rootstock/interstock combinations was mainly due to a reduction in the length and number of neoformed nodes produced on extension growth units. As percentage budbreak of axillary buds on extension growth units was not affected by rootstock/interstock combination, differences in numbers of axillary annual shoots per branch were entirely due to differences in the total numbers of nodes extended during the previous year.  相似文献   

15.
Shoot growth and histogenesis were followed in five unrelated tree taxa possessing inherently diverse patterns of shoot development. Following the resumption of growth in spring, each species differs quantitatively in the number of internodes elongating contemporaneously, in rates and duration of internodal elongation and seasonal periodicity of shoot growth. The basic pattern of internode elongation and histogenesis is qualitatively similar in each of the dicotyledonous species observed irrespective of growth habit or final form of the shoot produced. During the intial phase of internode development, growth is essentially uniform throughout young internodes, corresponding to an active period of cell division during which time pith cells increase in size to about one-third their final length. Subsequently, the pattern of cell division shifts progressively upward concomitant with increased elongation and maturation of pith cells in the basal portion of developing internodes. Thereafter, a wave of cell division accompanied by cell elongation continues to proceed acropetally until growth finally ceases in the distal portion of each internode. As long as internode elongation continues, frequently at distances 15–20 cm below the shoot apex, cell divisions still occur in the distal growing portion. As successive portions of each internode mature acropetally, final length of pith cells becomes relatively uniform throughout the internode. During the process of internode growth and development, cell lengths increase only two- to threefold, whereas cell numbers increase ten- to 30-fold, indicating the dominant role of cell division and increases in cell number to final internode length. Morphological patterns of shoot expression associated with differences in internode lengths along the axis of either preformed or neoformed shoots, as well as sylleptic branches, are due to differences in cell number rather than final cell length. Significant variations in final internode lengths along the axis of episodic shoots, caused by either endogenous or exogenous factors, are also attributed to differences in cell number.  相似文献   

16.
Summary Shoot preformation was investigated in buds of four clones of Fraxinus pennsylvanica var. subintegerrima (Vahl) Fern. at two sites in Manitoba in the second (1988) and third (1989) growing seasons after grafting. More preformed primordia were produced in terminal buds in 1989 compared to 1988 at each site. Both terminal and lateral buds at Morden contained significantly more primordia than those at Winnipeg. The numbers of preformed primordia were significantly different among clones. Clone 3 produced the most and clone 1 the fewest primordia in terminal buds. Despite quantitative variation, the pattern was similar among clones for terminal buds at each site and in each year. A similar pattern was evident for lateral buds at the Winnipeg site in 1989 but at Morden, clones 4 and 1 had the largest number of preformed primordia. Data from 1989 revealed that numbers of primordia were correlated with bud dimensions, parent shoot length, diameter and number of leaves, and location of the bud on the parent. Shoot dry weight was also related to these variables and revealed a non-linear increase in dry weight with shoot length. Multiple regression, with parent shoot length and location of buds along the parent axis as independent variables provided a reliable indicator of preformation in the crown. Although there is a genotypic component to preformation, variation between sites, years and crown locations suggests plasticity in bud development.  相似文献   

17.
Costes E 《Annals of botany》2003,92(4):581-588
An investigation was made of the number of preformed organs in winter buds of 3-year-old reiterated complexes of the 'Granny Smith' cultivar. Winter bud content was studied with respect to bud position: terminal buds were compared on both long shoots and spurs according to branching order and shoot age, while axillary buds were compared between three zones (distal, median and proximal) along 1-year-old annual shoots in order 1. The percentage of winter buds that differentiated into inflorescences was determined and the flowers in each bud were counted for each bud category. The other organ categories considered were scales and leaf primordia. The results confirmed that a certain number of organs must be initiated before floral differentiation occurred. The minimum limit was estimated at about 15 organs on average, including scales. Total number of lateral organs formed was shown to vary with both bud position and meristem age, increasing from newly formed meristems to 1- and 2-year-old meristems on different shoot types. These differences in bud organogenesis depending on bud position, were consistent with the morphogenetic gradients observed in apple tree architecture. Axillary buds did not contain more than 15 organs on average and this low organogenetic activity of the meristems was related to a low number of flowers per bud. In contrast, the other bud categories contained more than 15 differentiated organs on average and a trade-off was observed between leaf and flower primordia. The ratio between the number of leaf and flower primordia per bud varied with shoot type. When the terminal buds on long shoots and spurs were compared, those on long shoots showed more flowers and a higher ratio of leaf to flower primordia.  相似文献   

18.

Key message

The aim of this study is to evaluate the relationships between primary and secondary growth as well as the influences of climate variations on both types of growth.

Abstract

The relationships between apical (or primary) and radial (or secondary) growth, and climatic influences on both types of growth, were evaluated for Nothofagus pumilio (Nothofagaceae), the dominant subalpine tree in Patagonia. We measured the spacing and number of nodes of annual shoots developed in the period 2001–2010 in 40 N. pumilio trees growing near the upper treeline in the northern Patagonian Andes (41°S). Variations in ring width at the base of each trunk were also recorded. Interannual variations in primary and secondary growth were significantly related to each other, and to several climate variables. Mean temperatures in winter and early spring (June–October) prior to the period of shoot extension were positively associated with both primary and secondary growth. In addition, total summer precipitation (December–March) was positively related to shoot extension, whereas mean summer temperature during the previous growth season (January–March) was directly related to radial growth. These climatic influences on N. pumilio growth may play a major role in regulating the expressions of preformation and neoformation.  相似文献   

19.
Size structure of current-year shoots in mature crowns   总被引:1,自引:0,他引:1  
Suzuki M 《Annals of botany》2003,92(3):339-347
Characteristics of current-year shoot populations were examined for three mature trees of each of three deciduous broad-leaved species. For first-order branches (branches emerging from the vertical trunk) of the trees examined, lengths or diameters of all current-year shoots were measured. Total leaf mass and total current-year stem mass of first-order branches were estimated using an allometric relationship between leaf or stem mass and length or diameter of current-year stems. For each tree, the number of current-year shoots on a first-order branch was proportional to the basal stem cross-sectional area of the branch. On the other hand, first-order branches had shoot populations with size structures similar to each other. As a result, the leaf mass of a first-order branch was proportional to the basal stem cross-sectional area of the branch, being compatible with the pipe-model relationship. All current-year shoot populations had positively skewed size structures. Because small shoots have a larger ratio of leaf mass to stem mass than large shoots, first-order branches had an extremely large ratio of leaf mass to current-year stem mass. This biased mass allocation will reduce costs for current stem production, respiration and future radial growth, and is beneficial to mature trees with a huge accumulation of non- photosynthetic organs. The allometric relationships between leaf mass and basal stem diameter and that between leaf mass and current-year stem mass of first-order branches were each similar across the trees examined. Characteristics of shoot populations tended to offset inter-species diversity of shoot allometry so that branch allometry shows inter-species convergence.  相似文献   

20.
以3年生黄冠梨为材料,探讨了早春施用15N尿素后,树体在萌芽期-新梢缓慢生长期和新梢缓慢生长期-果实成熟期对氮素的吸收、分配与利用特性。结果表明: 梨树在萌芽期-新梢缓慢生长期主要以新梢和叶片等营养器官生长为核心;在新梢缓慢生长期-果实成熟期则以根系等贮藏器官生长为主,果实产量品质形成为辅,且树体尤其是贮藏器官的生物量成倍增加。由于各器官尤其是新梢和叶片生长旺盛、新梢缓慢生长期吸收的标记氮量相对较多,各器官吸收的肥料氮(Ndff)值相对较高;果实成熟期除粗根外各器官的Ndff值均低于新梢缓慢生长期。萌芽期到新梢缓慢生长期吸收的标记氮主要分配在新梢和叶片营养器官中,新梢缓慢生长期到果实成熟期吸收的标记氮则主要分配在贮藏器官中;整个生育期间,植株吸收的标记氮在贮藏器官中分配率最高,营养器官次之,生殖器官中分配率最低。3年生梨树从萌芽期-新梢缓慢生长期、新梢缓慢生长期-果实成熟期吸收的肥料氮分别占当年总吸氮量的31.1%和21.0%,而两个时期内吸收的土壤氮占比分别达68.9%和79.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号