首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have reported a defect in the cAMP-dependent protein kinases (cAMP-PK) in psoriatic cells (i.e., a decrease in 8-azido-[32P]cAMP binding to the regulatory subunits and a decrease in phosphotransferase activity) which is rapidly reversed with retinoic acid (RA) treatment of these cells. This led us to examine a possible direct interaction between retinoids and the RI and RII regulatory subunits through retinoylation. Retinoylation of RI and RII present in normal and psoriatic human fibroblasts was analysed by [3H]RA treatment of these cells, followed either by chromatographic separation of the regulatory subunits or by their specific immunoprecipitation. These studies indicated that RI and RII can be retinoylated. [3H]RA labeling of the RII subunit was significantly (P < 0.005) greater in psoriatic fibroblasts (nine subjects; mean 7.47 relative units ± 1.37 SEM) compared to normal fibroblasts (eight subjects; mean 2.46 relative units ± 0.49 SEM). [3H]RA labeling of and the increase in 8-azido-[32P]-binding to the RI and RII subunit in psoriatic fibroblasts showed a similar time course. This suggests that the rapid effect of retinoic acid treatment to enhance 8-azido-[32P]-cAMP binding to the RI and RII in psoriatic fibroblasts may be due, in part, to covalent modification of the regulatory subunits by retinoylation. © 1996 Wiley-Liss, Inc.  相似文献   

2.
cAMP-dependent protein kinases I and II: divergent turnover of subunits   总被引:5,自引:0,他引:5  
W Weber  H Hilz 《Biochemistry》1986,25(19):5661-5667
cAMP-dependent protein kinase subunits were isolated from livers of rats that had been subjected to biosynthetic labeling with radioactive leucine. By application of ligand and antibody affinity techniques pure regulatory (R I; R II) and catalytic (C) subunits could be obtained in high yields, which allowed measurement of the apparent degradation rate constants and half-lives following a double isotope labeling protocol. In this way marked differences of apparent half-lives of regulatory subunits R I (t1/2 = 31 h) and R II (t1/2 = 125 h) were observed. To avoid the negative influence of reutilization inherent in the decay experiments, specific radioactivities were determined after a short isotope pulse. This parameter, which under steady-state conditions reflects the fractional turnover rate of the subunits, was found to be different for all three protein kinase subunits. Relative to total liver protein, the ratios R I:R II:C corresponded to 3.9:0.6:2. Our data indicate that in each type of protein kinase isoenzymes regulatory and catalytic subunits turn over with similar rates. The type I isoenzyme, however, is renewed much faster than protein kinase II. Furthermore, our findings are consistent with the thesis that free subunits as generated by activation are more susceptible to degradation than the holoenzymes, leading under steady-state conditions to compensatory resynthesis. Since renewal of R I exceeded that of R II also in two other tissues, the elevated turnover of protein kinase I as an indicator of preferential activation appears to be a general phenomenon. The different turnover of the two isoenzymes, then, may relate to different cellular functions like modulation of enzyme activity vs. modulation of gene activity.  相似文献   

3.
The types and subunit composition of cAMP-dependent protein kinases in soluble rat ovarian extracts were investigated. Results demonstrated that three peaks of cAMP-dependent kinase activity could be resolved using DEAE-cellulose chromatography. Based on the sedimentation of cAMP-dependent protein kinase and regulatory subunits using sucrose density gradient centrifugation, identification of 8-N3[32P]cAMP labeled RI and RII in DEAE-cellulose column and sucrose gradient fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and Scatchard analysis of the cAMP-stimulated activation of the eluted peaks of kinase activity, the following conclusions were drawn regarding the composition of the three peaks of cAMP-dependent protein kinase activity: peak 1, eluting with less than or equal to 0.05 M potassium phosphate, consisted of the type I form of cAMP-dependent protein kinase; peak 2, eluting with 0.065-0.11 M potassium phosphate, consisted of free RI and a type II tetrameric holoenzyme; peak 3, eluting with 0.125 M potassium phosphate, consisted of an apparent RIIC trimer, followed by the elution with 0.15 M potassium phosphate of free RII. The regulatory subunits were confirmed as authentic RI and RII based upon their molecular weights and autophosphorylation characteristics. The more basic elution of the type II holoenzyme with free RI was not attributable to the ionic properties of the regulatory subunits, based upon the isoelectric points of photolabeled RI and RII and upon the elution location from DEAE-cellulose of RI and RII on dissociation from their respective holoenzymes by cAMP. This is the first report of a type II holoenzyme eluting in low salt fractions with free RI, and of the presence of an apparent RIIC trimer in a soluble tissue extract.  相似文献   

4.
Monomeric cAMP-binding fragments of molecular mass 16,000 and 14,000 daltons were obtained by Sephadex G-75 chromatography of partially trypsin-hydrolyzed regulatory subunits of cAMP-dependent protein kinase isozymes I and II, respectively. The Stokes radii were 19.1 and 16.4 A, the frictional ratios were 1.15 and 1.03, and the sedimentation coefficients were 1.94 and 1.91 S for the 16,000- and 14,000-dalton fragments, respectively. The 16,000-dalton fragment retained specific cyclic nucleotide binding characteristics of the native protein. The specificity of cyclic nucleotide binding to the 14,000-dalton fragment (cAMP greater than cIMP = 8-bromo-cAMP = 8-oxo-cAMP greater than cUMP = cGMP) differed from that of the native subunit (cAMP = 8-oxo-cAMP greater than 8-bromo-cAMP greater than cIMP greater than cUMP = cGMP). The 14,000-dalton fragment bound nearly 1 mol of cAMP/mol of fragment. The binding exchange rate of cAMP was much faster for the 14,000-dalton fragment than for either of the native regulatory subunits or for the 16,000 dalton fragment. Although hemin inhibited cAMP binding to the native regulatory subunits and to the 16,000 dalton fragment, the molecule did not affect cAMP binding to the 14,000-dalton fragment. Both of the native regulatory subunits and the isolated 16,000- and 14,000-dalton fragments could be covalently labeled with the photoaffinity analog, 8-N3-[32P]cAMP. The 14,000-dalton fragment could not be phosphorylated and neither fragment could recombine with the catalytic subunit to inhibit its activity. The results indicate that the functional entities of the regulatory subunit other than cAMP binding are destroyed by trypsin. The properties of the 16,000-dalton fragment suggest that the intact cAMP-binding site is contained in a small trypsin-resistant "core" of the native regulatory subunit. The properties of the 14,000-dalton fragment imply that part of the binding site of the native regulatory subunit was slighlty modified or lost during preparation of this fragment.  相似文献   

5.
G Schwoch  A Freimann 《FEBS letters》1986,197(1-2):143-148
To quantify the cAMP-dependent protein kinases I and II in parotid gland nuclei independent of the enzyme activity, monospecific antisera against their subunits were applied in a sensitive enzyme immunoassay. About 3% of total catalytic subunit in the homogenate was found in the isolated nuclei. During beta-agonist-induced proliferation of the parotid gland the nuclear concentration of catalytic and regulatory subunits changed. Related to the number of nuclei, the catalytic subunit and the regulatory subunit RI increased about 3-fold whereas the regulatory subunit RII remained unchanged.  相似文献   

6.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

7.
The mammalian cAMP-dependent protein kinases have regulatory (R) subunits that show substantial homology in amino acid sequence with the catabolite gene activator protein (CAP), a cAMP-dependent gene regulatory protein from Escherichia coli. Each R subunit has two in-tandem cAMP binding domains, and the structure of each of these domains has been modeled by analogy with the crystal structure of CAP. Both the type I and II regulatory subunits have been considered, so that four cAMP binding domains have been modeled. The binding of cAMP in general is analogous in all the structures and has been correlated with previous results based on photolabeling and binding of cAMP analogues. The model predicts that the first cAMP binding domain correlates with the previously defined fast dissociation site, which preferentially binds N6-substituted analogues of cAMP. The second domain corresponds to the slow dissociation site, which has a preference for C8-substituted analogues. The model also is consistent with cAMP binding in the syn conformation in both sites. Finally, this model has targeted specific regions that are likely to be involved in interdomain contacts. This includes contacts between the two cAMP binding domains as well as contacts with the amino-terminal region of the R subunit and with the catalytic subunit.  相似文献   

8.
Cànaves JM  Leon DA  Taylor SS 《Biochemistry》2000,39(49):15022-15031
The regulatory (R) subunit of cAMP-dependent protein kinase (cAPK) is a multidomain protein with two tandem cAMP-binding domains, A and B. The importance of cAMP binding on the stability of the R subunit was probed by intrinsic fluorescence and circular dichroism (CD) in the presence and absence of urea. Several mutants were characterized. The site-specific mutants R(R209K) and R(R333K) had defects in cAMP-binding sites A and B, respectively. R(M329W) had an additional tryptophan in domain B. Delta(260-379)R lacked Trp260 and domain B. The most destabilizing mutation was R209K. Both CD and fluorescence experiments carried out in the presence of urea showed a decrease in cooperativity of the unfolding, which also occurred at lower urea concentrations. Unlike native R, R(R209K) was not stabilized by excess cAMP. Additionally, CD revealed significant alterations in the secondary structure of the R209K mutant. Therefore, Arg209 is important not only as a contact site for cAMP binding but also for the intrinsic structural stability of the full-length protein. Introducing the comparable mutation into domain B, R333K, had a smaller effect on the integrity and stability of domain A. Unfolding was still cooperative; the protein was stabilized by excess cAMP, but the unfolding curve was biphasic. The R(M329W) mutant behaved functionally like the native protein. The Delta(260-379)R deletion mutant was not significantly different from wild-type RIalpha in its stability. Consequently, domain B and the interaction between Trp260 and cAMP bound to site A are not critical requirements for the structural stability of the cAPK regulatory subunit.  相似文献   

9.
The major cAMP-binding proteins isolated from [35S]methionine-labeled S49 mouse lymphoma cells or MDBK bovine kidney cells correspond in isoelectric point and apparent molecular weight to the regulatory subunit (R) of type I cAMP-dependent protein kinase. These proteins were compared directly by two-dimensional gel electrophoresis and by two-dimensional gel electrophoresis of peptides generated either from native R with thermolysin and chymotrypsin or from denatured R with papain. Both the undigested proteins and all their major peptides were identical in charge and apparent molecular weights, indicating a very high degree of structural homology.  相似文献   

10.
The dynamics of distribution of the regulatory subunit of cAMP-dependent protein kinase II following protein injection into 3T3 cells was studied. The cAMP-binding component of protein kinase was injected into the cells, using erythrocyte ghosts. The conditions for protein encapsulation into erythrocyte ghosts were elaborated. The optimal detergent concentrations, incubation time and conditions of vesicular closure following protein injection were selected. The above method provides for a high (50-55%) yield of the erythrocyte ghost-encapsulated protein with a minimum loss of enzymatic activity. Fusion of erythrocyte ghosts containing the labeled protein with 3T3 cells was carried out. Using the cytoradiography technique, the dynamics of distribution of the radiolabeled regulatory subunit within the cell was analyzed. It was demonstrated that after the regulatory subunit has reached the cytoplasm, the protein is translocated into the nucleus and is pooled there is the vicinity of the nucleoli.  相似文献   

11.
《Insect Biochemistry》1985,15(6):835-844
Cyclic AMP (cAMP)-dependent regulation of in vitro phosphorylation of several proteins including a cAMP-binding protein was studied with crude membrane and cytosol fractions from Drosophila heads. Phosphorylation of at least seven distinct proteins was enhanced in the presence of cAMP. Interestingly, however, the phosphorylation of a 56 kDa protein was apparently reduced by cAMP in the membrane but not in the cytosol fraction. The following data strongly indicate that the 56 kDa phosphoprotein in both membrane and cytosol fractions is a cAMP-binding protein, very similar to the regulatory subunit (RII) of a mammalian cAMP-dependent protein kinase, and that its binding to cAMP makes this protein very susceptible to the action of phosphatases: (i) cAMP highly stimulated the dephosphorylation of the 56 kDa phosphoprotein by the endogenous phosphatase in the membrane fraction. (ii) The dephosphorylation of a similar 56 kDa phosphoprotein in the cytosol fraction by an exogenous, cAMP-independent, alkaline phosphatase was also highly stimulated by cAMP. (iii) The 56 kDa phosphoprotein was covalently bound to cAMP by u.v. irradiation. (iv) The alkaline-phosphatase treatment reversibly converted this phosphoprotein to a 53 kDa non-phosphorylated protein. (v) The 53 kDa protein was selectively bound to cAMP-agarose and subsequently eluted by cAMP and high salt. (vi) This protein served as a substrate for the catalytic subunit of a mammalian cAMP-dependent protein kinase.  相似文献   

12.
Mammalian tissues and cell lines express two major types of cAMP-dependent protein kinase, PKA-I and PKA-II, which can be distinguished at the molecular level by the presence of either type I or type II regulatory subunits in the holoenzyme. An expression vector for the mouse type II regulatory subunit (RII alpha) was transfected into ras-transformed NIH3T3 (R3T3) cells, which contain approximately equal amounts of both holoenzymes, PKA-I and PKA-II. In RII alpha-overexpressing R3T3 cells, PKA-II levels were increased, and the level of PKA-I declined. The decrease in PKA-I was dependent on the amount of RII alpha expressed, and at high levels of RII alpha expression, PKA-I was completely eliminated. In contrast, overexpression of the type I regulatory subunit (RI alpha) did not alter PKA isozyme levels. We propose that competition between RII alpha and RI alpha for a limited pool of catalytic subunit results in preferential assembly of PKA-II and that significant amounts of PKA-I are formed only if catalytic subunit is present in excess of the RII alpha subunit. The PKA-I isozyme, which is absent in untransformed 3T3 cells, is not essential for the transformed phenotype of R3T3 cells. RII alpha-overexpressing R3T3 cells that are devoid of PKA-I continued to exhibit a transformed phenotype including anchorage-independent growth. Overexpression of RII alpha provides a genetic approach that may prove useful in demonstrating specific functions for the two PKA isozymes in cAMP-dependent signal transduction pathways.  相似文献   

13.
The subcellular distribution of catalytic (C) and regulatory (RI and RII) subunits of cAMP-dependent protein kinases has been studied by electron microscopy immunocytochemistry. The C-subunit was localized in the inner membrane-matrix space of mitochondria, at the cytoplasmic face of the rough endoplasmic reticulum (rER), in the nucleolus and in peripheral heterochromatin regions. A C-specific immunoreactivity was also found in specific domains of the basal and basolateral plasma membranes of acinar and duct cells, in centrosomes and on keratin filaments which anchor in desmosomes. The RI- and RII-subunits showed a basically similar subcellular distribution. A remarkably high RII-immunoreactivity, in the absence of C-immunoreactivity, was demonstrated in the secretory granules. These results demonstrate the presence of cAMP-dependent protein kinases or their subunits in many subcellular organelles. They also indicate a role for cAMP-dependent protein kinases in the regulation of a number of basal cellular functions as well as their importance in functional and structural cell-cell interactions.  相似文献   

14.
Each protomer of the regulatory subunit dimer of cAMP-dependent protein kinase contains two tandem and homologous cAMP-binding domains, A and B, and cooperative cAMP binding to these two sites promotes holoenzyme dissociation. Several amino acid residues in the type I regulatory subunit, predicted to lie in close proximity to each bound cyclic nucleotide based on affinity labeling and model building, were replaced using recombinant techniques. The mutations included replacement of 1) Glu-200, predicted to hydrogen bond to the 2'-OH of cAMP bound to site A, with Asp, 2) Tyr-371, the site of affinity labeling with 8-N3-cAMP in site B, with Trp, and 3) Phe-247, the position in site A that is homologous to Tyr-371 in site B, with Tyr. Each mutation caused an approximate 2-fold increase in both the Ka(cAMP) and Kd(cAMP); however, the off-rates for cAMP and the characteristic pattern of affinity labeling with 8-N3-cAMP differed markedly for each mutant protein. Furthermore, these mutations affect the cAMP binding properties not only of the site containing the mutation, but of the adjacent nonmutated site as well, thus confirming that extensive cross-communication occurs between the two cAMP-binding domains. Photoaffinity labeling of the native R-subunit results in the covalent modification of two residues, Trp-260 and Tyr-371, by 8-N3-cAMP bound to sites A and B, respectively, with a stoichiometry of 1 mol of 8-N3-cAMP incorporated per mol of R-monomer (Bubis, J., and Taylor, S. S. (1987) Biochemistry 26, 3478-3486). A stoichiometry of 1 mol of 8-N3-cAMP incorporated per R-monomer was observed for each mutant regulatory subunit as well, even when 2 mol of 8-N3-cAMP were bound per R-monomer; however, the major sites of covalent modification were altered as follows: R(Y371/W), Trp-371; R(E200/D), Tyr-371, and R(F247/Y), Tyr-371.  相似文献   

15.
16.
During the G1/S transition of the cell cycle variations in the labelling by 8-N3-[32P]cAMP of the protein kinase A regulatory subunits RI and RII, used as a probe to monitor post-translational modifications that may regulate cAMP binding, were observed in synchronized HeLa cells. A decrease in 8-N3-[32P]cAMP labelling of RI, RII and RII phosphorylated by the catalytic subunit of PKA was correlated with the increased percentage of cells in phases G1. An increase in 8-N3-[32P]cAMP incorporated into the 54-kDa RII subunit during progression from G1 to S was correlated with an increase in intracellular cAMP. A transient increase in Mn-SOD activity was detected in cells arrested at the G1/S transition using two different techniques, suggesting that oxidative modulation of regulatory subunits by free radicals may modify cAMP binding sites during the cell cycle. Decreased photoaffinity labelling by 8-N3-[32P]cAMP of RI, RII and autophosphorylated RII subunits was found to be an inherent characteristic of PKA in the G1/S transition.  相似文献   

17.
18.
The activity of cAMP-dependent protein kinases, cAMP binding and the spectrum of cAMP-binding proteins in renal papillary cytosol of intact rats and of rats kept on a water-deprived diet for 24 hours were investigated. It was found that the stimulation of protein kinases by 10(-6) M cAMP in the experimental group was significantly higher than in the control one. On DEAE-cellulose chromatography, the position of peaks of the specific cAMP binding corresponded to those of the regulatory cAMP-dependent protein kinases type I and II. Under these conditions, more than 80% of the binding activity in intact animals was localized in peak II, whereas in rats kept on a water-deprived diet over 60% of the binding activity was localized in peak I. The total binding activity of cytosol in experimental animals remained unchanged is compared to intact rats. It is suggested that in renal papilla dehydration is accompanied by the induction of synthesis of regulatory subunits of cAMP-dependent protein kinase type I.  相似文献   

19.
20.
cAMP-dependent protein kinases have been characterized in parietal cells isolated from rabbit gastric mucosa. Both Type I and Type II cAMP-dependent protein kinase isozymes are present in these cells. Type II isozymes were detected in 900, 14,000, and 100,000 X g particulate fractions as well as 100,000 X g cytosolic fractions; Type I isozymes were found predominately in the cytosolic fraction. When parietal cells were stimulated with histamine, an agent that elevates intracellular cAMP content and initiates parietal cell HCl secretion, cAMP-dependent protein kinase activity was increased in homogenates of these cells as measured by an increase in the cAMP-dependent protein kinase activity ratio. Histamine activation of cAMP-dependent protein kinase was correlated with parietal cell acid secretory responses which were measured indirectly as increased cellular uptake of the weak base, [14C]aminopyrine. These results suggest that cAMP-dependent protein kinase(s) is involved in the control of parietal cell HCl secretion. The parietal cell response to histamine may be compartmentalized because histamine appears to activate only a cytosolic Type I cAMP-dependent protein kinase isozyme, as determined by three different techniques including 1) ion exchange chromatography; 2) Sephadex G-25 to remove cAMP and allow rapid reassociation of the Type II but not the Type I isozyme; and 3) 8-azido-[32P]cAMP photoaffinity labeling. Forskolin, an agent that directly stimulates adenylate cyclases, was found to activate both the Type I and Type II isozymes. Several cAMP-dependent protein kinases were also detected in parietal cell homogenates, including a Ca2+-phospholipid-sensitive or C kinase and two casein kinases which were tentatively identified as casein kinase I and II. At least two additional protein kinases with a preference for serine or lysine-rich histones, respectively, were also detected. The function of these enzymes in parietal cells remains to be shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号