首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Platelet derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) catalyzes the phosphorolysis of thymidine (TdR) to thymine and deoxyribose-1-phosphate (dR-1-P) and has a pro-angiogenic effect for which dR-1-P may be responsible. Using a purine nucleoside phosphorylase based assay it was found that TdR incubation did not increase dR-1-P accumulation in colon cancer cell line Colo320 and its PD-ECGF/TP transfected variant Colo320TP1. The assay was linear up to 25,000pmol dR-1-P with complete recovery of dR-1-P from cellular extracts. There was a huge discrepancy between thymine production and the measured dR-1-P level, 0.05% of the expected value for dR-1-P was found, indicating that there was a rapid disappearance of dR-1-P. However, in cellular extracts, TdR incubation increased dR-1-P, measurable by trapping, which was inhibited by a thymidine phosphorylase inhibitor. dR-1-P directly added to cellular extracts disappeared within 5-10min. In conclusion, large amounts of dR-1-P are produced by Colo320TP1 cells, which rapidly disappear thus not resulting in a net accumulation of dR-1-P in these cells.  相似文献   

2.
Thymidine phosphorylase (TP) catalyzes the phosphorolytic cleavage of thymidine to thymine and deoxyribose-1-phosphate. TP, which is overexpressed in a wide variety of solid tumors, is involved in the activation and inactivation of fluoropyrimidines. TP is known to be regulated by several cytokines and interferons. In our HT29 cell line the TP mRNA and activity expression increased 2-3 fold after treatment with interferon alpha.  相似文献   

3.
Platelet-derived endothelial cell growth-factor (PD-ECGF) is similar to the pyrimidine enzyme thymidine phosphorylase (TP). A high TP expression at tumor sites is correlated with tumor growth, induction of angiogenesis, and metastasis. Therefore, high TP is most likely associated with a poor prognosis. TP is not only expressed in tumor cells but also in tumor surrounding tissues, such as tumor infiltrating macrophages. TP catalyzes the conversion of thymidine to thymine and doxyribose-1-phosphate (dR-1-P). The latter in its parent form or in its sugar form, deoxyribose (dR) may play a role in the induction of angiogenesis. It may modulate cellular energy metabolism or be a substrate in a chemical reaction generating reactive oxygen species. L-deoxyribose (L-dR) and thymidine phosphorylase inhibitor (TPI) can reverse these effects. The mechanism of TP induction is not yet completely clear, but TNF, IL10 and other cytokines have been clearly shown to induce its expression. The various complex interactions of TP give it an essential role in cellular functioning and, hence, it is an ideal target in cancer therapy.  相似文献   

4.
Platelet-derived endothelial cell growth factor (PD-ECGF), a protein which stimulates angiogenesis in vivo, is shown to have a 39.2% amino acid sequence similarity over a 439 amino acid region with the thymidine phosphorylase of Escherichia coli (E. coli). Using recombinant human PD-ECGF, we show that PD-ECGF has thymidine phosphorylase activity. Analysis by gel chromatography revealed that recombinant human PD-ECGF occurs as a 90 kDa homodimer, similar to other thymidine phosphorylases. In addition to a possible effect on DNA synthesis, PD-ECGF was shown to affect [3H]thymidine assays in a manner which is not related to cell proliferation. The in vitro and in vivo effects of PD-ECGF may thus occur by an indirect mechanism through its enzymatic activity.  相似文献   

5.
6.
A Moghaddam  R Bicknell 《Biochemistry》1992,31(48):12141-12146
Platelet-derived endothelial cell growth factor (PD-ECGF) has been expressed in Escherichia coli as a fusion protein with glutathione S-transferase (GST). The fusion protein was purified by one-step affinity chromatography on glutathione-agarose beads, and recombinant PD-ECGF was proteolytically cleaved with thrombin from its GST leader peptide to yield pure protein. Recombinant PD-ECGF stimulated [3H]methylthymidine uptake by endothelial cells in vitro; however, we were unable to detect stimulation of cell proliferation under a wide variety of conditions. We confirm that in accord with the recent report that PD-ECGF and human thymidine phosphorylase are products of the same gene [Furukawa, T., Yoshimura, A., Sumizawa, T., Haraguchi, M., & Akiyama, S. I. (1992) Nature 356, 668] recombinant PD-ECGF has thymidine phosphorylase activity comparable to that of E. coli thymidine phosphorylase. Further, E. coli thymidine phosphorylase was able to mimic the activity of recombinant PD-ECGF in the [3H]methylthymidine uptake assay, and it appears that recombinant PD-ECGF's effect on the uptake of thymidine by endothelial cells may be due to modulation of cellular thymidine pools. The mechanism by which PD-ECGF stimulates angiogenesis remains to be elucidated.  相似文献   

7.
8.
Huang YT  Chen SU  Chou CH  Lee H 《Cellular signalling》2008,20(8):1521-1527
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.  相似文献   

9.

Background  

Despite significant achievements in the treatment of cervical cancer, it is still a deadly disease; hence newer therapeutical modalities are needed. Preliminary investigations suggest that platelet-derived growth factor (PDGF) might have a role in the development of cervical cancer, therefore it is important to determine whether this growth factor pathway is functional and its targeting with imatinib mesylate leads to growth inhibition of cervical cancer cells.  相似文献   

10.
Blood platelets are the smallest cellular elements in mammalian blood. Because of their small size, platelets have an usually large surface area: volume ratio and are exquisitely sensitive to a multitude of physiologica and environmental stimuli. Platelets lack nuclei, but most possess functional mitochondria and remain capable of both anaerobic and aerobic energy metabolism, for which they utilise a variety of substrates including many which are cytotoxic and genotoxic for other (nucleated) cells. Nucleic acid precursors are amongst the potentially genotoxic compounds for which platelets have an apparently insatiable appetite. In particular platelets actively scavenge adenine and adenosine, which they convert to nucleotides and use in energy metabolism, but they also rapidly phosphorylyse thymidine and liberate thymine into the extracellular medium. In addition, platelets contain non-metabolisable membrane-bound pools of adenine nucleotides which they secrete in response to strong agonists. Taken together, these observations suggest that blood platelets play an important role in nucleic acid precursor metabolism.

In the previous paper we have shown that most thymidine phosphorylase activity present in normal human blood resides in the cytoplasm of platelets. Here we demonstrate that this enzyme activity can be modulated in a dose-dependent fashion, not only by substances recognised as platelet agonists and antagonists, but also by some compounds which are considered to be toxic, mutagenic and/or carcinogenic. The data which we present provide additional support for our previous suggestion that platelets regulate thymidine homeostasis and further imply that this is the normal, physiological, platelet function. Preliminary results suggest that assays of blood platelet thymidine metabolism may provide data with a wide variety of applications.  相似文献   


11.
Proangiogenic, proliferative effects of tumors have been extensively characterized in subconfluent endothelial cells (EC), but results in confluent, contact-inhibited EC are critically lacking. The present study examined the effect of tumor-conditioned medium (CM) of the malignant osteoblastic cell line MG63 on monolayer, quiescent bovine aorta EC. MG63-CM and MG63-CM + CoCl2 significantly increased EC survival in serum-starved conditions, without inducing EC proliferation. Furthermore, MG63-CM and MG63-CM + CoCl2, both containing high amounts of vascular endothelial growth factor (VEGF), induced relevant phenotypic changes in EC (all P < 0.01) involving increase of nucleoli/chromatin condensations, nucleus-to-cytosol ratio, capillary-like vacuolated structures, vessel-like acellular areas, migration through Matrigel, growth advantage in reseeding, and factor VIII content. All these actions were significantly inhibited by VEGF and VEGF receptor (VEGFR2) blockade. Of particular importance, a set of similar effects were detected in a human microvascular endothelial cell line (HMEC). With regard to gene expression, incubation with MG63-CM abolished endogenous VEGF mRNA and protein but induced a clear-cut increase in VEGFR2 mRNA expression in EC. In terms of mechanism, MG63-CM activates protein kinase B (PKB)/Akt, p44/p42-mitogen-activated protein kinase (MAPK)-mediated pathways, as suggested by both inhibition and phosphorylation experiments. In conclusion, tumor cells activate confluent, quiescent EC, promoting survival, phenotypic, and gene expression changes. Of importance, VEGF antagonism converts MG63-CM from protective to EC-damaging effects. vascular endothelial growth factor receptor 2; MG63-conditioned medium  相似文献   

12.
Mechanisms of endothelial repair induced by a platelet lysate (PL) were studied on human (HuVEC, HMVEC‐c) and non‐human (PAOEC, bEnd5) endothelial cells. A first set of analyses on these cells showed that 20% (v/v) PL promotes scratch wound healing, with a maximum effect on HuVEC. Further analyses made on HuVEC showed that the ERK inhibitor PD98059 maximally inhibited the PL‐induced endothelial repair, followed in order of importance by the calcium chelator BAPTA‐AM, the PI3K inhibitor wortmannin and the p38 inhibitor SB203580. The PL exerted a chemotactic effect on HuVEC, which was abolished by all the above inhibitors, and induced a PD98059‐sensitive increase of cell proliferation rate. Confocal calcium imaging of fluo‐3‐loaded HuVEC showed that PL was able to induce cytosolic free Ca2+ oscillations, visible also in Ca2+‐free medium, suggesting an involvement of Ins3P‐dependent Ca2+ release. Western blot analysis on scratch wounded HuVEC showed that PL induced no activation of p38, a transient activation of AKT, and a sustained activation of ERK1/2. The complex of data indicates that, although different signalling pathways are involved in PL‐promoted endothelial repair, the process is chiefly under the control of ERK1/2. J. Cell. Biochem. 110: 783–793, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
目的研究大肠癌原发灶和相应淋巴结转移灶中胸苷磷酸化酶(thymidine phosphorylase,TP)及血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)的表达及与5-氟尿嘧啶(5-fluorouracil, 5-FU)化疗敏感性的关系。方法收集2010年1月至2012年3月间上海交通大学医学院附属新华医院崇明分院诊治的有淋巴结转移的大肠腺癌患者;通过免疫组织化学方法,检测VEGF和TP在大肠癌原发灶和相应淋巴结转移灶中的表达,共观察33例。结果大肠癌原发灶中癌细胞TP及VEGF的阳性表达率与相应淋巴结转移灶中的表达无显著差异;7例预后较好的病例中,原发灶中间质细胞TP表达明显,淋巴结转移灶中癌细胞VEGF不表达。结论大肠癌原发灶和相应淋巴结转移灶之间癌细胞的TP、VEGF表达水平无显著差异;对于有淋巴结转移的大肠癌,癌细胞TP表达水平不能预测而间质细胞及炎症细胞的TP表达水平可能预测癌对以5-FU为基础的化疗反应。  相似文献   

14.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

15.
Thymidine Pi deoxyribosyltransferase (TP) is an enzyme involved in DNA synthesis up-regulated in tumours and it is also a pro-angiogenic factor. TP cannot activate capecitabine, because capecitabine first needs conversion by carboxylesterase and cytidine deaminase into 5-deoxy-fluorouridine. This compound can be activated by TP to 5-fluorouracil (5-FU). Although TP is not necessary for 5-FU toxicity, experimental data suggest that high levels of TP correlate with an enhanced response to 5-FU therapy. In this study, we have analysed by immunohistochemistry CD34, CD68 and TP positive cells in bioptic samples from 53 patients with T(1-3) N(0-1) M(0) oropharyngeal squamous cell carcinoma (OSC) and from 24 patients with non-dysplastic oropharyngeal leukoplakia (NDOLP). Results showed that the mean of TP-positive cells, CD68 positive macrophages and CD34 positive endothelial cells eval-uated as microvessel density (MVD) was significantly higher in OSC than in NDOLP. Moreover, at a median follow-up of 19 months, patients with TP expression and higher MVD showed a better survival rate as compared to those with low MVD, probably as a consequence of 5-FU-based therapy.We hypothesized a role for TP in oropharyngeal tumourigenesis and 5-FU activation in the adjuvant setting of OSC patients.  相似文献   

16.
Recombinant transforming growth factor (TGF)-beta 1 precursor was recently found to contain mannose 6-phosphate (Purchio et al., 1988, J. Biol. Chem. 263, 14211-14215). In the present study, recombinant TGF-beta 1 precursor was shown to bind to the insulin-like growth factor (IGF)-II/mannose 6-phosphate (man6P) receptor on the plasma membrane of cells since: 1) Insulin, which induces an increase in cell surface IGF-II/man6P receptors on adipocytes, caused a 2.7-fold increase in TGF-beta 1 precursor binding to adipocytes; 2) Chinese hamster ovary cells selected for overexpression of the IGF-II/man6P receptor exhibited an increased binding of TGF-beta 1 precursor in comparison to the parental cells; and 3) the binding of 125I-TGF-beta 1 precursor to these transfected cells and adipocytes was largely inhibited by man6P. After 15 minutes at 37 degrees C, 75% of the recombinant TGF-beta 1 precursor was found to be internalized in the transfected cells. Additional studies with latent TGF-beta 1 isolated from platelets indicated that this material could also bind to the isolated IGF-II/man6P receptor.  相似文献   

17.
Platelet-derived growth factors (PDGFs) are paracrine growth factors mediating epithelial-mesenchymal interactions and exerting multiple biological activities which include cell proliferation, motility, and differentiation. As previously demonstrated, PDGFs act during embryonic development and recently, by culturing male genital ridges, we have demonstrated that PDGF-BB is able to support in vitro testicular cord formation. In the present paper, we report that PDGF-BB is present during embryonic testis development and, in organ culture, induces cord formation although with reduced diameters compared with the cords formed in the genital ridges cultured in the presence of HGF. Moreover we have analyzed the roles exerted by this growth factor during the morphogenesis of the testis. We demonstrate by immunohistochemical experiments that PDGF-BB and its receptors are synthesized by the male UGRs isolated from 11.5 and 13.5 dpc embryos and by Western blot that the factor is secreted in a biologically active form by testicular cells isolated from 13.5 dpc embryos. The biological roles of the factor have also been studied and we demonstrate that PDGF-BB acts as a migratory factor for male mesonephric cells whose migration is a male specific event necessary for a normal testicular morphogenesis. In addition we demonstrate that during testicular development, PDGF-BB induces testicular cell proliferation being in this way responsible for the increase in size of the testis. Finally we demonstrate that PDGF-BB is able to reorganize dissociated testicular cells inducing the formation of large cellular aggregates. However the structures formed in vitro under PDGF-BB stimulation never had a cord-like morphology similar to the cord-like structures formed in the presence of HGF (Ricci et al., 2002, Mech Dev 118:19-28), suggesting that this factor does not act as a morphogenetic factor during testicular development. All together the data presented in this paper demonstrate that PDGF-BB and its receptors (alpha- and beta-subunits) are present during the crucial ages of embryonic mouse testis morphogenesis and indicate the multiple roles exerted by this factor during the development of the male gonad.  相似文献   

18.
19.
Cell extracts of Acholeplasma laidlawii B-PG9, Acholeplasma morum S2, Mycoplasma capricolum 14, and Mycoplasma gallisepticum S6 were examined for 37 cytoplasmic enzyme activities involved in the salvage and biosynthesis of purines. All of these organisms had adenine phosphoribosyltransferase activity (EC 2.4.2.7) and hypoxanthine phosphoribosyltransferase activity (EC 2.4.2.8). All of these organisms had purine-nucleoside phosphorylase activity (EC 2.4.2.1) in the synthetic direction using ribose-1-phosphate (R-1-P) or deoxyribose-1-phosphate (dR-1-P); this activity generated ribonucleosides or deoxyribonucleosides, respectively. The pyrimidine nucleobase uracil could also be ribosylated by using either R-1-P or dR-1-P as a donor. The synthesis of deoxyribonucleosides from nucleobases and dR-1-P has been reported from only one other procaryote, Escherichia coli (L. A. Mason and J. O. Lampen, J. Biol. Chem. 193:539-547, 1951). The reverse of this phosphorylase reaction is more widely known, and we found such activity in all mollicutes studied. Some Acholeplasma species but not the Mycoplasma species can phosphorylate deoxyribonucleosides to deoxyribomononucleotides by a PPi-dependent deoxyribonucleoside kinase activity, which was first reported in this group for the ribose analogs (V. V. Tryon and J. D. Pollack, Int. J. Syst. Bacteriol. 35:497-501, 1985). This is the first report of PPi-dependent purine deoxyribonucleoside kinase activity. An ATP-dependent purine deoxyribonucleoside kinase activity is known only in salmon milt extracts (H. L. A. Tarr, Can. J. Biochem. 42:1535-1545, 1964). Deoxyribomononucleotidase activity was also found in cytoplasmic extracts of these mollicutes. This is the first report of deoxyribomononucleotidase activity.  相似文献   

20.
In attempts to determine the mechanism of proliferation of arterial smooth muscle cells (SMC) in intimal atheromatous lesions, autocrine secretion of growth factors by SMC has recently received much attention. Here we report a new growth factor named smooth muscle cell derived growth factor (SDGF). Cultured rabbit medial SMC secreted SDGF for 1 week during their incubation in serum-free media only after at least 4 passages. SDGF differed from platelet derived growth factor (PDGF) physicochemically, immunologically, and biologically. The properties of SDGF also seemed different from those of other known growth factors that stimulate the proliferation of mesenchymal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号