首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myogenic protein MyoD requires two nuclear histone acetyltransferases, CREB-binding protein (CBP)/p300 and PCAF, to transactivate muscle promoters. MyoD is acetylated by PCAF in vitro, which seems to increase its affinity for DNA. We here show that MyoD is constitutively acetylated in muscle cells. In vitro, MyoD is acetylated both by CBP/p300 and by PCAF on two lysines located at the boundary of the DNA binding domain. MyoD acetylation by CBP/p300 (as well as by PCAF) increases its activity on a muscle-specific promoter, as assessed by microinjection experiments. MyoD mutants that cannot be acetylated in vitro are not activated in the functional assay. Our results provide direct evidence that MyoD acetylation functionally activates the protein and show that both PCAF and CBP/p300 are candidate enzymes for MyoD acetylation in vivo.  相似文献   

2.
3.
Changes in histone acetylation during postovulatory aging of mouse oocyte   总被引:2,自引:0,他引:2  
Because some animals and human beings potentially engage in sexual activity at any day of the menstrual cycle, this may cause fertilization of postovulatory aged oocytes, which result in decreased potential of embryo development and longevity of offspring. To investigate the involvement of histone acetylation in the function of postovulatory aging, we examined the changes of histone acetylation by immunostaining with specific antibodies against various acetylated lysines on histones H3 and H4. We found that the acetylation levels of lysine 14 on histone H3 and lysines 8 and 12 on histone H4 in mouse oocytes were gradually increased during in vivo and in vitro postovulatory aging. Furthermore, the acetylation levels on these sites were markedly decreased or increased when the process of postovulatory aging was artificially delayed or accelerated, respectively. These results indicated that the gradual acetylation on some lysines of histones H3 and H4 is one of the phenomena in the process of postovulatory aging. Moreover, raising the level of histone acetylation by trichostatin A can accelerate the progression of postovulatory aging, suggesting that alteration of the acetylation on histones H3 and H4 can affect the progression of postovulatory aging in mouse oocytes.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Myostatin inhibits myoblast differentiation by down-regulating MyoD expression   总被引:38,自引:0,他引:38  
Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.  相似文献   

11.
12.
13.
The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. Here we show that OGG1 is acetylated by p300 in vivo predominantly at Lys338/Lys341. About 20% of OGG1 is present in acetylated form in HeLa cells. Acetylation significantly increases OGG1's activity in vitro in the presence of AP-endonuclease by reducing its affinity for the abasic (AP) site product. The enhanced rate of repair of 8-oxoG in the genome by wild-type OGG1 but not the K338R/K341R mutant, ectopically expressed in oxidatively stressed OGG1-null mouse embryonic fibroblasts, suggests that acetylation increases OGG1 activity in vivo. At the same time, acetylation of OGG1 was increased by about 2.5-fold after oxidative stress with no change at the polypeptide level. OGG1 interacts with class I histone deacetylases, which may be responsible for its deacetylation. Based on these results, we propose a novel regulatory function of OGG1 acetylation in repair of its substrates in oxidatively stressed cells.  相似文献   

14.
15.
16.
17.
18.
Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases.  相似文献   

19.
Human Fen1 can be acetylated in vivo and in vitro resulting in reduced endonuclease and exonuclease activities in vitro. Acetylation occurs at four lysines located at the C terminus of Fen1, which is important for DNA binding. In this paper we show that Fen1 mutant proteins lacking the lysines at the C terminus have both reduced PCNA independent exonucleolytic and endonucleolytic activities. However, lysines at the C terminus are not required for PCNA stimulation of human Fen1. A double flap substrate was optimal for human Fen1 endonuclease and did not require the C-terminal lysines. Similarly, a one nucleotide 3'-overhang nick substrate was optimal for human Fen1 exonuclease and also did not require the C-terminal lysines. Finally, we found by an electromobility shift assay that human Fen1 had a different mode of binding with a double flap substrate containing a one nucleotide 3'-tail when compared to various other flap substrates. Taken together, our results confirm the double flap substrate as the likely in vivo intermediate for human Fen1 and that the C-terminal lysines are important for the endonuclease and exonuclease activities likely through DNA binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号