首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study examined the role of odd and even short-chain fatty acid substrates on aerobic and glycolytic metabolism in well-aerated primary cultures of rabbit renal proximal tubule cells (RPTC). Increasing oxygen delivery to primary cultures of RPTC by shaking the dishes (SHAKE) reduced total lactate levels and lactate dehydrogenase (LDH) activity and reduced net glucose consumption compared to RPTC cultured under standard conditions (STILL). The addition of butyrate, valerate, heptanoate, or octanoate to SHAKE RPTC produced variable effects on glycolytic metabolism. Although butyrate and heptanoate further reduced total lactate levels and net glucose consumption during short-term culture (<24 h), no fatty acid tested further reduced total lactate levels, net glucose consumption, or LDH activity during long-term culture (7 days). During the first 12 h of culture, maintenance of aerobic metabolism in SHAKE RPTC was dependent on medium supplementation with fatty acid substrates (2 mM). However, by 24 h, SHAKE RPTC did not require fatty acid substrates to maintain levels of aerobic metabolism equivalent to freshly isolated proximal tubules and greater than STILL RPTC. This suggests that SHAKE RPTC undergo adaptive changes between 12 and 24 h of culture, which give RPTC the ability to utilize other substrates for mitochondrial oxidation, therefore allowing greater expression of mitochondrial oxidative potential in SHAKE RPTC than in STILL RPTC.  相似文献   

2.
Summary FK506 has been used as the primary immunosuppressive agent administered after a variety of organ transplants, with less reported nephrotoxicity than that of cyclosporine. This study examined in vitro cytotoxicity of FK506 on normal human renal proximal tubule cells. Cytotoxicity was assessed by neutral red inclusion and trypan blue exclusion; morphology was assessed by light and transmission electron microscopy. Neutral red inclusion decreased to less than 10% of the control after 3 days exposure to 200μg/ml FK506. Forty microgram per milliliter FK506 caused a decrease in neutral red inclusion to 61% of the control on Day 7, with recovery to 86% on Day 12. Similarly, trypan blue exclusion decreased to 66% of the control following 7 days exposure to 40μg/ml FK506, and confluency of the monolayer was reduced to 50% as evidenced by phase contrast microscopy. After a 12-day exposure, treated monolayers became more confluent. On ultrastructural examination, FK506-treated cells exhibited increased cytoplasmic vacuolation and lipid inclusion. These data suggest that FK506 is reversibly and mildly toxic to monolayers of human renal proximal tubule cells and are consistent with clinical reports of reversible nephrotoxicity.  相似文献   

3.
The growth of rat kidney proximal tubule cells was monitored continuously by the cellular incorporation of [methyl-(14)C] thymidine using scintillating microplates. The radioisotope had no effect on cell proliferation over a 5 day period, neither was it extensively converted to thymine. Leibovitz L-15 medium supplemented with bicarbonate proved a good growth medium and its high levels of carbohydrates and amino acids facilitated the appearance of intermediates in the cells' metabolism of additional radioactive amino acids. Kidney proximal tubule cells had a greater potential to process amino acids than BHK-21 cells. The utilization of amino acids by proximal tubule cells differed from that of other organs. The amino acids could be classified into three classes. Members of the first type were only used for protein synthesis (arginine, lysine, histidine and tyrosine). The second class of amino acids yielded only one or two metabolites (leucine and isoleucine), while the last type gave more than two metabolites (alanine, aspartate, glycine, methionine, proline and valine).  相似文献   

4.
Summary Proximal tubules were prepared from rat kidney cortex by collagenase digestion and purified by percoll gradient centrifugation. Their enrichment was estimated by comparing the specific activities of various cell-specific enzymes in homogenates of renal cortex and of the isolated tubules. The tubules were cultured in a 50:50 mixture of Dulbecco’s modified Eagle’s and Ham’s F12 media supplemented with insulin, transferrin, epidermal growth factor, hydrocortisone, and prostaglandin E1. After 2 to 3 d an extensive outgrowth of epithelial cells developed from the attached tubules. After 5 to 7 d near confluent monolayers were obtained. Hormonal responsiveness, marker enzyme activities, and transport properties were determined to further characterize the primary cultures. The cultured cells exhibited increased cyclic AMP production in response to parathyroid hormone but not calcitonin or vasopressin, consistent with the absence of cells derived from distal and collecting tubules. The cells also retained significant levels of 25-hydroxyvitamin D3-lα-hydroxylase, alkaline phosphatase, and ψ-glytamyltranspeptidase, three enzymes that are primarily associated with the proximal tubule. The cultured epithelial cells also exhibit a Na+-dependent phosphate and glucose transport systems. Therefore, the cells retain many functional properties that are characteristic of proximal tubules. Thus, the primary cultures should be suitable for the study of processes that occur specifically within this segment of the rat nephron. This work was supported in part by the Veterans Administration (JBP), Washington, DC, by grant DK-37124 (NPC) from the National Institutes of Health, Bethesda, MD, and by grant BNS-86-17004 (CFL) from the National Science Foundation, Washington, DC.  相似文献   

5.
Among kidney tubular epithelial cell types, proximal tubule cells are one of the major renal targets for xenobiotics. Several in vitro culture models have been proposed for use of proximal tubule cells for in vitro pharmacotoxicology studies. This paper reports a comparative study of the response to cephaloridine exposure of two established cell lines from pig (LLC-PK1) and rabbit (LLC-RK1) kidneys and primary cultures of rat and rabbit proximal tubule cells. These cultured cells were first compared for their levels of activity of -methylglucopyranoside transport, alkaline phosphatase, succinate dehydrogenase, and NADPH cytochrome c reductase, their glutathione-dependent activity levels, and their adenylate cyclase response pattern to stimulation by PTH and AVP. The results presented show major phenotypic differences between these four cellular models. The differences observed in glutathione-dependent mechanism activities and regulation may in part be responsible for the variability of the responses of these four cellular models when exposed to cephaloridine.Abbreviations AVP arginine vasopressin - GGT -glutamyl transpeptidase - GRED glutathione reductase - GSH glutathione - GST glutathione S-transferase - PTC proximal tubule cells - PTH parathyroid hormone - SDH succinate dehydrogenase  相似文献   

6.
Summary Proximal tubule cells were isolated from swine kidney and cultured for periods of more than 30 days. The cells formed confluent monolayers after plating on a collagen surface and they were passaged more than 5 times on this matrix. The cells maintain several metabolic functions of proximal tubule cells, including gluconeogenesis and the ability to respond to epinephrine and parathyroid hormone. Gluconeogenesis, a principal metabolic pathway in proximal tubule cells, was examined as a function of days in culture. The isolated cells showed a nearly constant rate of gluconeogenesis from 14C-lactate, 14C-alkaine and 14C-glycerol with no significant loss of activity for at least 30 days in culture. Likewise, the activities of several cytosolic and membrane associated enzymes including, alkaline phosphatase, -glutamyltransferase, fructose-1,6-bisphosphatase and phosphofructokinase were nearly constant over the same time period.The cells responded to treatment with epinephrine and parathyroid hormone, and the rate of gluconeogenesis from 14C-lactate doubled in the presence of these hormones. The morphological and biochemical evidence obtained in these studies show that the proximal tubule cells isolated from swine kidney provide an excellent well defined system for studying the hormonal regulation of carbohydrate metabolism in this tissue.Abbreviations PTH Parathyroid Hormone - cAMP cyclic 3,5-adenosine Monophosphate  相似文献   

7.
Primary rabbit kidney proximal tubule (RPT) cells (S.D. Chung et al., 1982, J. Cell Biol. 95, 118-126) were transfected with the vector pRSV-T, which contains SV40 early region genes. After the third passage (when normal cells had stopped dividing), individual colonies formed in cultures transfected with pRSV-T. Clonal isolates (RPT-I cells) could be obtained in a simple and reproducible manner. Southern analysis of clone RPT-I8 indicated the presence of SV40 early region genes. Nuclear SV40 T was detected. After 23 passages, and subcloning, RPT-I8 (and subclones) was found to express renal proximal tubule markers to a similar extent, indicating that the phenotype was stable. Nevertheless, the activities of the Na(+)/glucose cotransport system, gamma-glutamyl transpeptidase and alkaline phosphatase, were reduced as compared with primary cultures. Western analysis indicated that the level of Na(+)/glucose cotransporters was maintained in RPT-I8 cells, when compared with intact proximal tubules and primary cultures. Thus, the reduction in alpha-MG uptake in RPT-I8 cells may be attributed to other types of cellular alterations, including changes in energy metabolism. Indeed, growth in glucose-free medium was not observed in RPT-I8 cell cultures, suggesting that unlike primary RPT cells (J. C. Chung et al., 1992, J. Cell. Physiol. 150, 243-250), the gluconeogenic pathway was not intact.  相似文献   

8.
《Autophagy》2013,9(11):1876-1886
Chronic metabolic stress is related to diseases, whereas autophagy supplies nutrients by recycling the degradative products. Cyclosporin A (CsA), a frequently used immunosuppressant, induces metabolic stress via effects on mitochondrial respiration, and thereby, its chronic usage is often limited. Here we show that autophagy plays a protective role against CsA-induced metabolic stress in kidney proximal tubule epithelial cells. Autophagy deficiency leads to decreased mitochondrial membrane potential, which coincides with metabolic abnormalities as characterized by decreased levels of amino acids, increased tricarboxylic acid (TCA) ratio (the levels of intermediates of the latter part of the TCA cycle, over levels of intermediates in the earlier part), and decreased products of oxidative phosphorylation (ATP). In addition to the altered profile of amino acids, CsA decreased the hyperpolarization of mitochondria with the disturbance of mitochondrial energy metabolism in autophagy-competent cells, i.e., increased TCA ratio and worsening of the NAD+/NADH ratio, coupled with decreased energy status, which suggests that adaptation to CsA employs autophagy to supply electron donors from amino acids via intermediates of the latter part of the TCA cycle. The TCA ratio of autophagy-deficient cells was further worsened with decreased levels of amino acids in response to CsA, and, as a result, the deficiency of autophagy failed to adapt to the CsA-induced metabolic stress. Deterioration of the TCA ratio further worsened energy status. The CsA-induced metabolic stress also activated regulatory genes of metabolism and apoptotic signals, whose expressions were accelerated in autophagy-deficient cells. These data provide new perspectives on autophagy in conditions of chronic metabolic stress in disease.  相似文献   

9.
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.  相似文献   

10.
Normal rat kidney proximal tubule cells in primary and multiple subcultures   总被引:5,自引:0,他引:5  
Summary Anin vitro model to establish primary and subcultures of rat kidney proximal tubule (RPT) cells is described. After excising the kidneys and separating the cortex, the cortical tissue is digested with the enzyme DNAse-collagenase (Type I) resulting in a high yield of viable RPT Cells. The isolated RPT cells are then seeded onto rat tail collagen-coated surfaces and grown to confluency in a serum-free, hormonally defined medium. The cell yield can be increased by transfering the conditioned medium on Day 1 to more rat tail collagen-coated surfaces. RPT cell attachment and morphology was better on rat tail collagen-coated surfaces than on bovine collagen Type I coated surfaces. The culture medium was a 1∶1 mixture of Ham’s F-12 and Dulbecco’s modified Eagle’s medium supplemented with bovine serum albumin, insulin, transferrin, selenium, hydrocortisone, triiodothyronine, epidermal growth factor, and glutamine. The RPT cells became confluent in 7–10 d, at which point they could be subcultured by trypsinizing and growth in the same medium. In some studies, 10 ng/ml cholera toxin was added to the culture medium. We could passage the RPT cells up to 14 times in the presence of cholera toxin. The cells were investigated for activity of several markers. The cells were histochemically positive for alkaline phosphatase and γ-glutamyl transpeptidase activity and synthesized the intermediate filament pankeratin. The RPT cells displayed apically directed sodium-dependent active glucose transport in culture. Hence, the RPT cells retain structural and functional characteristics of transporting renal epithelia in culture. This rat cell culture model will be a valuable tool for substrate uptake and nephrotoxicity studies.  相似文献   

11.
Summary Monolayers of human proximal tubule (HPT) cells, when grown on permeable supports and mounted in Ussing chambers, spontaneously display a transepithelial potential difference (PD), short-circuit current (Isc), and transepithelial specific resistance (RT). These electrical parameters were used to determine the degree of heterogeneity among independent isolates of human proximal tubule cell cultures. Seventeen independent isolates of cells were assessed, totaling 260 individual determinations of spontaneous electrical properties. On average, these cell monolayers displayed an apicalnegative PD of 1.5 ± 0.1 mV, an Isc of 2.7 ± 0.2 μA/cm2, and an RT of 480 ± 19 ohms × cm2. Each independent cell isolate, however, displayed electrical values within a narrow range, in some cases allowing isolates to be distinguished from one another. The individual isolates were also assessed for Na-coupled glucose transport, Na+,K+-ATPase activity, cAMP stimulation by parathyroid hormone (PTH), forskolin stimulation of Isc, and ouabain inhibition. With the exception of a strong correlation between Na+,K+-ATPase activity and Isc, these parameters, in contrast to electrical properties, were found to be consistent and did not reveal distinctions among the isolates. HPT cell cultures seem to consistently retain important features of proximal tubule differentiation while maintaining the variability, as demonstrated by electrical properties, that might be expected of cells isolated from a random population.  相似文献   

12.
Gao Y  Luo L  Liu H 《生理学报》2007,59(3):382-386
本研究旨在对Doucet等报道的定量检测大鼠单根近端肾小管Na^+-K^+-ATPase活性方法进行改进。取经过Ⅱ型胶原酶消化的大鼠肾脏皮质组织,在体视显微镜下手工分离单根近端肾小管,并测量其长度,经低渗和冻融处理后与[γ-^32P]ATP共同孵育,液闪法检测从[γ-^32P]ATP解离出的^32Pi,采用修正后的公式计算Na^+-K^+-ATPase活性。改良法与Doucet等的方法比较,测定单根近端肾小管Na^+-K^+-ATPase活性无显著性差异(P〉0.05)。改进后的方法节省试剂,操作简便、省时。  相似文献   

13.
Summary The aminoglycoside antibiotic streptomycin is a known nephrotoxin in vivo and a common component of cell culture media. The effects of streptomycin (100 μg/ml) on transepithelial electrical properties, glucose transport, glycolytic metabolism, and morphology were examined in primary proximal tubule cell cultures from winter flounder (Pseudopleuronectes americanus) kidney. Streptomycin treatment on either Days 2 to 12 or Days 8 to 13 abolished the transepithelial potential difference and short-circuit current across the monolayer but had no effect on transepithelial resistance in confluent 12 to 13-dcultures, suggesting the loss of active transepithelial transport. Consistent with these findings, mucosal-to-serosal glucose fluxes were greatly reduced in streptomycin-treated cultures and insensitive to the transport inhibitor phlorizin, indicating the absence of the apical Na-dependent glucose transport system associated with net glucose reabsorption. In addition to transport processes, antibiotic treatment also interfered with cellular energy metabolism as judged by the rapid reduction in glycolytic lactate production observed in the presence of streptomycin. Scanning and transmission electron microscopy revealed that streptomycin-treated culture were composed of cuboidal-to-columnar shaped cells which maintained intact tight junctions similar to control cultures. However, apical microvilli, the presumed sites of mucosal transport systems, were severely reduced in number in streptomycin-treated cultures. We concluded that streptomycin, at a dose commonly used in cell culture, inhibited the expression of differentiated function by flounder proximal tubule cell cultures. These cell cultures may provide a suitable model system for examination of the mechanisms of aminoglycoside nephrotoxicity. This investigation was supported by the University of Connecticut Research Foundation and by grant PCM-8003452 from the National Science Foundation, Washington, DC.  相似文献   

14.
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.  相似文献   

15.
Summary The Ca2– entry pathways in the basolateral plasma membrane of the isolated, nonperfused proximal straight tubule (PST) of rabbit kidney were investigated using fura-2 fluorescence microscopy. Under isotonic conditions, reduction of bath [Ca2–] from 1 mM to 1 M caused intracellular free calcium concentration ([Ca2+]i) to fall close to zero. Treatment with 10 M verapamil, a calcium channel blocker, had a similar effect. Treatment with verapamil or low Ca2+ also induced fluctuations in cell volume. However, isotonic treatment with 10 M nifedipine, a dihydropyridine (DHP)-type calcium channel blocker, did not affect [Ca2+]i or cell volume, indicating that the endogenous Ca2+ entry pathway is verapamil-sensitive but DHP-insensitive. When cells were exposed to hypotonic solutions in the presence of 1 mM Ca2+, they swelled and underwent normal RVD while [Ca2+]i increased transiently to a peak before decreasing to a late phase plateau level above the baseline level (see McCarty, N.A., O'Neil, R.G. 1991.J. Membrane Biol. 123:149–160). When cells were swollen in the presence of verapamil or low bath [Ca2+], RVD was abolished and [Ca2+]i fell well below the baseline during the late phase response. In contrast, when cells were swollen in the presence of nifedipine, RVD and the late phase rise in [Ca2+]i were abolished, but [Ca2+]i did not fall below the baseline level in the late phase, indicating that nifedipine inhibited the swelling-induced Ca2+ entry but that Ca2+ entry by another pathway was undisturbed. It was concluded that PST cells are characterized by two Ca2+ permeability pathways in the basolateral membrane. Under both isotonic and hypotonic conditions, Ca2+ entry occurs at a slow rate via a verapamil-sensitive, DHP-insensitive baseline Ca2+ entry pathway. Cell swelling activates a separate DHP-sensitive, verapamil-sensitive Ca2+ entry pathway, which is responsible for the supply of Ca ions to the Ca2+-dependent mechanism by which cell volume regulation is achieved.  相似文献   

16.
Background: For biotechnological use of cells in tissue engineered applications, such as biohybrid renal devices, optimal culture conditions are required. Oxygen delivery is one of the most important cell determined system criterion for ex vivo applications. It is involved in the maintenance of highly oxygen‐dependent renal tubular epithelial cells, affecting metabolic state, differentiation, and desired transport functions. The purpose of this study was to examine respiratory patterns such as basal oxygen consumption, solute transport‐related oxygen demand, and oxygen concentration‐dependent oxygen uptake of renal tubular epithelial cells in vitro. Methods: Respiratory patterns of highly purified human primary renal proximal (hPTC) and early distal tubular cells (hTALDC) were analyzed by perfusion respirometry. Spontaneous oxygen consumptions and maximum respirations after carbonyl cyanide m‐chlorophenyl hydrazone (CCCP) uncoupling were measured. Respiration fractions contributing to basolateral Na+/K+‐ATPase transport activities were assessed via ouabain inhibition and Na+‐free medium. Furthermore, we determined oxygen uptake in dependency of oxygen concentration and morphology in various culture conditions (shaken, static). Results: Respiration of solely hPTC strongly depended on oxygen concentration in a Michaelis‐Menten pattern at noncritical oxygen concentrations. Respiration of both cell types was significantly increased by CCCP, whereas average Na+/K+‐ATPase‐based oxygen uptake fractions differ significantly between the two cell types. Nevertheless, no significant differences were found in spontaneous respiration between hPTC and hTALDC. Conclusions: Our results clearly indicate that cell‐specific oxygen consumption parameters have to be considered in the design of biotechnological devices intended to support kidney function by cell‐supported renal replacement therapy. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

17.
Nephropathic cystinosis is an autosomal recessive disorder caused by mutations in the CTNS gene [1], which encodes for a transporter (cystinosin) responsible for cystine efflux from lysosomes. In cystinotic renal proximal tubules (RPTs), the defect in cystinosin function results in reduced reabsorption of solutes by apical Na+/solute cotransport systems, including the Na+/phosphate (Pi) cotransport system [2]. However the underlying molecular mechanisms are unknown, given the lack of an appropriate cellular model. To obtain such a model system, we have knocked down cystinosin with siRNA in primary RPT cell cultures. An 80% reduction in cystinosin strongly inhibited Na+ dependent Pi uptake (70%). Although this finding could be explained by a direct effect on transporters as well as by altered energetics (the ATP level dropped by 52%), our results demonstrate a lack of involvement of Na, K-ATPase, and a reduction in the number of NaPi2a transporters.  相似文献   

18.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

19.
Summary The mechanism of Ca2+-dependent control of hypotonic cell volume regulation was investigated in the isolated, nonperfused renal proximal straight tubule. When proximal tubules were exposed to hypotonic solution with 1 mM Ca2+, cells swelled rapidly and then underwent regulatory volume decrease (RVD). This treatment resulted in an increase in intracellular free calcium concentration ([Ca2+]i) by a mechanism that had two phases: the first was a transient increase from baseline (136 nM) to a peak (413 nM) that occurred in the first 15–20 sec, but was followed by a rapid decay toward the pre-swelling levels. The second phase was characterized by a sustained elevation of [Ca2+]i above the baseline (269 nM), which was maintained over several minutes. The dependence of these two phases on extracellular Ca2+ was determined. Reduction of bath [Ca2+] to 10 or 1 M partially diminished the transient phase, but abolished the sustained phase completely, such that [Ca2+]i fell below the base-line levels during RVD. It was concluded that the transient increase resulted predominantly from swelling-activated release of intracellular Ca2+ stores and that the sustained phase was due to swelling-activated Ca2+ entry across the plasma membrane. Ca2+ entry probably also contributed to the transient increase in [Ca2+]i. The time dependence of swelling-activated Ca2+ entry was also investigated, since it was previously shown that RVD was characterized by a calcium window period (<60 sec). during which extracellular Ca2+ was required. Outside of this time period, RVD would inactivate and could not be reactivated by subsequent addition of Ca2+. It was found that the Ca2+ permeability did not inactivate over several minutes, indicating that the temporal dependence of RVD on extracellular Ca2+ is not due to the transient activation of a Ca2+ entry pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号