首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent findings on differences between the gregarious and solitary phases of locusts are reviewed in relation to flight fuel utilization, adipokinetic responses, and adipokinetic hormones. Laboratory results obtained with Locusta migratoria migratorioides show that the amount of lipid reserves, resting levels of haemolymph lipids, and hyperlipaemic responses to flight and to injection of corpus cardiacum extract or of synthetic adipokinetic hormones, are higher in crowded than in isolated locusts. No major phase-dependent differences seem to exist in flight-related carbohydrate metabolism. The adipokinetic hormone content of the corpora cardiaca is higher in younger isolated locusts than in crowded ones. Adipokinetic hormone precursor-related peptide content of the corpora cardiaca is also higher in isolated than in crowded locusts. Crowded locusts have higher lipid reserves and higher hyperlipaemic responses to flight than isolated locusts also in Schistocerca gregaria and, following injection of synthetic adipokinetic hormone, the formation of low density lipophorin is higher in crowded than in isolated locusts of this species. The laboratory results obtained with isolated and crowded locusts are extrapolated to understand the ecophysiology of the migrations of solitary and gregarious field populations of L.m. migratorioides according to available information on the differences in the migration of the two phases. It is inferred that in this species solitary locusts have a rather coarse adipokinetic strategy focused on a single prereproductive long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative, sometimes unpredictably long-distance, migrations in the prereproductive, as well as reproductive, periods. The differences between the adipokinetic strategies of solitary and gregarious S. gregaria seem to be less dramatic, nevertheless, they indicate a better adaptation of the gregarious phase to prolonged flights.  相似文献   

2.
Immunoreactivity of granules containing secretory material in the adipokinetic cells of the insect Locusta migratoria was studied using antisera specific for the adipokinetic hormone-associated peptides (AAP) I, II and III. Immunocytochemical detection of these associated peptides represents a new strategy for studying the intracellular location of the adipokinetic hormones and their prohormones. Fixation with 2% glutaraldehyde and 2% formaldehyde with low-temperature embedding in Lowicryl HM20 allowed highly selective immunogold labelling of both secretory and intracisternal granules. All three associated peptides were co-localized in secretory granules. This indicates that also all three adipokinetic hormones can be co-localized in these granules, which was confirmed by experiments in which, after secretory stimulation, adipokinetic hormone III was released from the adipokinetic cells together with adipokinetic hormones I and II. The immunopositivity of the intracisternal granules was similar to that of the secretory granules, although with the exception that the intracisternal granules did not show any specific reaction with anti-AAP III. The presence of AAP I and AAP II in intracisternal granules indicates that these granules only function as stores of adipokinetic prohormones I and II and not of adipokinetic prohormone III. The observed differences in storage in intracisternal granules among the three adipokinetic prohormones suggest differences in physiological significance of the three adipokinetic hormones in L. migratoria.  相似文献   

3.
The intracisternal granules in locust adipokinetic cells appear to represent accumulations of secretory material within cisternae of the rough endoplasmic reticulum. An important question is whether these granules are destined for degradation or represent stores of (pro)hormones. Two strategies were used to answer this question. First, cytochemistry was applied to elucidate the properties of intracisternal granules. The endocytic tracers horseradish peroxidase and wheat-germ agglutinin-conjugated horseradish peroxidase were used to facilitate the identification of endocytic, autophagic, and lysosomal organelles, which may be involved in the degradation of intracisternal granules. No intracisternal granules could be found within autophagosomes, and granules fused with endocytic and lysosomal organelles were not observed, nor could tracer be found within the granules. The lysosomal enzyme acid phosphatase was absent from the granules. Second, biochemical analysis of the content of intracisternal granules revealed that these granules contain prohormones as well as hormones. Prohormones were present in relatively higher amounts compared with ordinary secretory granules. Since the intracisternal granules in locust adipokinetic cells are not degraded and contain intact (pro)hormones it is concluded that they function as supplementary stores of secretory material.  相似文献   

4.
Solitary and gregarious locusts differ in many traits, such as body color, morphometrics and behavior. With respect to behavior, solitary animals shun each other, while gregarious animals seek each other's company, hence their crowding behavior. General activity, depending on the temperature, occurs throughout the day but is much lower in solitary locusts. Solitary locusts occasionally fly by night while gregarious locusts fly regularly during daytime (swarming). In search of new assays to identify substances that control or modify aspects of (phase) behavior, we designed a simple activity assay, meant to complement existing behavioral measurement tools. The general activity is reflected in the number of wall hits, that is, the number of contacts between the locust and the vertical walls of a small arena. Using this single parameter we were able to quantify differences in total activity of both nymphs and adults of isolation-reared (solitary), regrouped- and crowdreared (gregarious) locusts under different conditions. Furthermore, we demonstrate that there are inter- and intra-phase dependent differences in activities of 5th instar nymphs afar injections of the three different adipokinetic hormones.  相似文献   

5.
Abstract. Flight fuel relations of crowded and isolated Locusta migratoria migratorioides were investigated in younger (12–16 days after fledging) and older (27–30 or 27–32 days after fledging) adult males.No phase polymorphism dependent differences were found in resting haemolymph carbohydrate levels of the younger locusts.In the older age group, resting haemolymph carbohydrate levels were slightly though significantly higher in the isolated than in the crowded locusts.Injection of various doses of synthetic adipokinetic hormones (AKHs) did not induce marked changes in haemolymph carbohydrate levels and no differences were found between crowded and isolated locusts.A 30 min flight led to the same decrease in haemolymph carbohydrate levels of isolated and crowded locusts, 43.3% and 44.6% of the resting levels, respectively.We concluded, therefore, that the results do not seem to indicate that isolated locusts rely more heavily on carbohydrates as flight fuel than crowded locusts.Hyperlipaemic responses to flight were less intense in isolated than in crowded locusts, but phase polymorphism dependent differences in flight-induced increase of haemolymph lipid levels were not parallel in 12–16-day-old and 27–32-day-old males.In the younger age group the difference was mainly in the duration of flight needed to induce full response which appeared already after 20 min of flight in the crowded locusts, but only after 45 or 60 min of flight in the isolated ones.In contrast, the older isolated locusts showed markedly lower haemolymph lipid elevations than the crowded locusts even after 30, 45 or 60 min of flight.The hypothesis is forwarded that isolated locusts have a rather coarse adipokinetic strategy focused on a single long-distance migratory flight, whereas gregarious locusts possess a fine adipokinetic balance for reiterative migratory flights and saving fuel reserves for unpredictable long-distance migrations.  相似文献   

6.
Hyperlipaemic response to adipokinetic hormone (AKH I) was demonstrated in both solitary and gregarious phases of the desert locust, Schistocerca gregaria gregaria. Time-course studies showed that the gregarious locusts had a faster response to the hormone than their solitary counterparts. At peak response time (90 min), the gregarious locusts were more sensitive to AKH I doses below 2 pmol while the solitary locusts had a higher response above this dose. Upon injection of the hormone, lipoprotein conversion occurred, resulting in the formation of the low density lipoprotein (LDLp). The LDLp formed in the gregarious locusts was much larger than that of the solitary locusts. The fat body lipid reserve (expressed as % fat body dry weight) was significantly (P < 0.01) higher in the gregarious (79.02 ± 2.77%) than in the solitary locusts (65.23 ± 2.55%). Triacylglycerol was the major lipid class representing 83.9 and 73.9% of the total lipids in gregarious and solitary locusts, respectively. The higher fat body lipid reserves and efficient LDLp formation in response to AKH in gregarious locusts compared to solitary locusts suggests a physiological adaptation for prolonged flights. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Summary A morphometric study was made of the ultrastructure of adipokinetic cells in resting adults of Locusta migratoria at 3, 23, and 43 days after imaginal ecdysis. The nucleus, rough endoplasmic reticulum, and Golgi apparatus enlarge with age, which indicates that the synthesis and packaging of secretory substances increases during ageing. The size of the storage compartment, consisting of secretory and ergastoplasmic granules, does not increase earlier than 23–43 days after imaginal ecdysis. The lysosomal compartment markedly enlarges between 3 and 23 days; later on, the growth of this compartment, especially of autophagosomes, is less prominent. This suggests that lysosomal destruction initially compensates for the production of new secretory granules, assuming that exocytosis of secretory granules by adipokinetic cells is insignificant in resting locusts. Afterwards, lysosomal destruction may no longer be sufficient to prevent over-production of secretory granules, as is suggested by the increase in the number of these granules between 23 and 43 days. This coincides with the appearance of a considerable number of large ergastoplasmic granules, which represent a spatially more efficient form of storage of secretory material than the much smaller secretory granules. The increase with age in the amount of secretory products indicates that the biosynthetic activity of the adipokinetic cells is not (finely) tuned to their releasing activity.  相似文献   

8.
蝗虫多型现象的神经内分泌调控   总被引:3,自引:1,他引:2  
蝗虫有两种型,即散居型和群居型。蝗灾通常由群居型蝗虫所引发。多年来人们试图找到控制蝗虫由散居型向群居型转变的关键因子,以期控制蝗虫危害。该文主要从神经内分泌的角度概述了蝗虫多型性的生理机制,重点介绍了保幼激素、蜕皮激素和脑神经肽[His7]-corazonin在蝗虫多型性中的主要作用和机制。  相似文献   

9.
Fractionation of methanol extracts of perfusate and haemolymph on thin-layer chromatography was used to separate hormones associated with haemolymph lipid regulation in Locusta. Electrical stimulation of the nervi corporis cardiaci II (NCC II) of isolated corpora cardiaca resulted in the release of three hormones into the perfusate; hypolipaemic hormone and two adipokinetic hormones. The two adipokinetic hormones co-migrated with synthetic adipokinetic hormone (adipokinetic hormone I) and with the RF value similar to Carlsen's peptide (adipokinetic hormone II).These two adipokinetic hormones were also present in small amounts in the haemolymph of unflown Locusta, and shown to be released during a 30-min flight. The adipokinetic hormone II fraction from the NCC II-stimulated perfusate and haemolymph also possessed hyperglycaemic activity when assayed in ligated locusts.It is concluded that NCC II controls the release of adipokinetic hormones during flight and that two adipokinetic hormones are released during flight. One of these hormones adipokinetic hormone II also acts as a hyperglycaemic hormone illustrating that a hyperglycaemic hormone is released, during flight.  相似文献   

10.
Abstract. The adipokinetic hormone (AKH-I and AKH-II) content of the corpora cardiaca from adult males of crowded (gregarious) and isolated (solitary) Locusta migratoria migratorioides (Reiche & Fairmaire) was quantified by reverse-phase high-performance liquid chromatography.Significantly less total hormone was found in the corpora cardiaca of crowded locusts than in those glands of isolated locusts at the age of 12–19 days after fledging.The ratio of AKH-I/AKH-II was higher in crowded than in isolated locusts at this age.From the age of 12–19 days to that of 25–30 days, AKH content increased significantly in the corpora cardiaca of crowded locusts, but no such increase was found in the glands of isolated locusts, and at 25–30 days there were no significant differences in the AKH content of the glands from crowded and isolated locusts.  相似文献   

11.
The effects of flight upon the level of cyclic AMP in the fat body of Locusta migratoria have been examined. Flight induced two phases of cyclic AMP elevation; the first during the initial 10 min of flight, the second between 20–30 min of flight. Neck-ligated locusts have increased levels of cyclic AMP after 10 min of flight, indicating that the adipokinetic hormones are not necessary for this elevation. Injection of 6 mg trehalose, a procedure known to delay the release of adipokinetic hormones, prevented the increases seen at 10 and 30 min of flight. Injection of synthetic adipokinetic hormone I increased the levels of cyclic AMP within 5 min, and these were maintained for up to 15 min. The roles of octopamine and the adipokinetic hormones in increasing fat body cyclic AMP, and thereby regulating haemolymph lipid, during flight are discussed.  相似文献   

12.
Summary The amounts of adipokinetic and diuretic hormone in the separate storage and glandular lobes of the locust corpora cardiaca during the imaginal moult and up to the onset of sexual maturation have been measured. The levels of the hormones are high prior to the imaginal moult, fall at emergence and increase during the somatic growth period. The effects of surgical interference with the neuroendocrine system upon the hormonal content of the corpora cardiaca have been investigated. Cautery of the brain neurosecretory cells or allatectomy in mature locusts has no effect on the content of adipokinetic hormone. Diuretic hormone is absent from the storage lobes of locusts deprived of their cerebral neurosecretory cells but normal levels are present in the corpora cardiaca of allatectomised animals. Severance of the nervus corporis cardiacum I and II reduces the level of diuretic hormone in the storage lobes of the corpora cardiaca but is without effect on the levels of adipokinetic hormone in the glandular lobes. This work is supported by grants from the Science Research Council and the Royal Society.  相似文献   

13.
Corpus cardiacum extracts from the phasmids, Carausius morosus, Cuniculina impigra, Sipyloidea sipylus, Acrophylla wuelfingi, Eurycantha goliath, Bacillus rossius and Extatosoma tiaratum, from the Orthopterans, Locusta migratoria and Gryllus bimaculatus, from the Dictyopterans, Periplaneta americana, Gromphadorrhina coquereliana and Blaberus craniifer, from the Coleopterans Tenebrio molitor and Pachnoda sp., synthetic adipokinetic hormone and synthetic crustacean red pigment-concentrating hormone (RPCH) were injected into locusts, cockroaches and ligated stick insects as bioassay systems for adipokinetic and hyperglycaemic substances, respectively. The locust and cockroach bioassay gave positive results with all corpus cardiacum material tested (however the lipid response in locusts upon injection of T. molitor corpus cardiacum extract was very poor). The stick insect bioassay was quite specific for stick insect corpus cardiacum material; only corpus cardiacum extracts from a few other species (G. bimaculatus, P. americana, G. coquereliana and Pachnoda sp.) showed weak activity. All other extracts, including synthetic adipokinetic hormone and RPCH, failed to induce a response.Separations of corpus cardiacum extracts from L. migratoria, P. americana, T. molitor, C. morosus and S. sipylus were achieved on reversed-phase high-performance liquid chromatography (RP-HPLC). Locust corpus cardiacum extract showed two absorbance peaks with adipokinetic activity, adipokinetic hormones I and II. The peaks with hyperglycaemic activity from P. americana corpus cardiacum extracts had different retention times to those of locust adipokinetic hormones I and II. Stick insect corpus cardiacum extracts revealed also 2 absorbance peaks with adipokinetic activity, the major one co-eluting with RPCH. The active compound from corpus cardiacum extracts of T. molitor appeared to elute close to locust adipokinetic hormone I.  相似文献   

14.
Summary The mechanism of long-distance flight in insects was investigated by comparing lipid mobilization and transport in gregarious- and solitary-phase locusts and in the American cockroach. Unlike the gregarious-phase locust, both the American cockroach and the solitary locust were unable to form low-density lipophorin (loaded with increased amount of diacylglycerol) even when injected with adipokinetic hormone (AKH). The cockroach fat body responded to AKH. However, not only does the American cockroach lack apolipophorin-III (apoLp-III) in the haemolymph, but the fat body contains only an extremely small amount of diacylglycerol and a relatively large triacylglycerol pool. By contrast, the solitary-phase locust had apoLp-III in the haemolymph, but the fat body was only one-seventh or less in weight of the fat body of the gregarious locust. Furthermore, the fat body of the solitary locust contains a very small amount of triacylglycerol (1/20 or less of that of the gregarious locust) with only a trace of diacylglycerol. It was concluded that in the American cockroach and the solitary locust, the stores of fuel in the fat body are insufficient to maintain prolonged flight.Abbreviations AKII adipokinetic hormone - apoLp-III apolipophorin III - HDLp high-density lipophorin - LDLp low-density lipophorin - LTP lipid transfer particle - MW molecular weight - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   

15.
After ovariectomy the concentrations of diacylglycerol and protein in the haemolymph increase markedly. The increased diacylglycerol is associated with increased quantities of the ‘heparin-precipitable’ protein (lipoprotein A) that carries diacylglycerol in the blood of normal resting locusts. After the injection of adipokinetic hormone (AKH), the blood of ovariectomized locusts contains only slight quantities of the ‘heparin-soluble’ lipoprotein A+ whereas this forms in large amounts in the blood of sham-operated locusts after AKH injection. After allatectomy, the increase in the adipokinetic response is slower and the full level of responsiveness observed in sham-operated locusts is never attained. Nevertheless, allatectomized locusts develop a marked adipokinetic response which tends to stabilize as they age; it does not deteriorate as it does in aged sham-operated locusts.The effects of ovariectomy on blood metabolites can be prevented completely by allatectomy, but only partially by cautery of the cerebral neurosecretory cells. Treatment with a juvenile hormone analogue (JHA R-20458) counteracts the effects of allatectomy in ovariectomized locusts.  相似文献   

16.
17.
18.
Various sensory stimuli have been suggested to induce gregarious body coloration in locusts, but most previous studies ignored the importance of substrate color. This study tested the effects of visual, olfactory and tactile stimuli from other locusts on the induction of gregarious body coloration in single (isolated-reared) Schistocerca gregaria nymphs housed in yellow-green cups. Odor from gregarious (crowd-reared) locusts, which is believed to induce black patterns in single locusts, had little effect when applied to visually isolated nymphs at the 2nd stadium onward, and all test nymphs remained green without black patterns at the last stadium, as in controls reared without odor and visual stimuli. Visual stimuli alone induced black patterns when a single solitarious nymph was allowed to see other locusts in another cup. The degree of black patterns increased as the number of locusts shown increased, and some test nymphs developed body coloration typically observed in gregarious forms. A classical morphometric ratio (hind femur length/head width) shifted toward the value typical of gregarious forms when the single nymphs were allowed to see 5 or 10 locusts. Single nymphs also developed black patterns when presented green conspecific nymphs and adults of two hemipteran species kept in another cup. No synergetic effects of visual and odor stimuli were detected. Movies of locusts, crickets and tadpoles were found effective in inducing black patterns in single locusts. Ontogenetic variation in the sensitivity to crowding and experimental methodology might be responsible for some discrepancies in the conclusions among different researchers.  相似文献   

19.
This review is concerned mainly with the adipokinetic hormones (AKHs) of locusts: their molecular conformations, actions and functions and the development of microfiltration assays in vitro. The physiological significance of having multiple hormones with overlapping actions whose efficacy changes during development is discussed in relation to the possibility that these reflect variations in populations of receptors and/or the pharmacokinetics of the peptides. The involvement of second messengers in the transduction mechanism of AKHs is reviewed, and we describe hormone-induced changes of intracellular calcium in single dispersed fat body cells. The structure activity relationships of the three locust AKHs and a number of analogues with variations at the N- and C-termini are discussed. A number of areas are identified where there are gaps in our understanding of these hormones, and some of these will be the focus of our future research.  相似文献   

20.
Fractionation of methanolic extracts of haemolymph on Sephadex LH-20 made possible the measurement of the titre of adipokinetic hormone in the haemolymph of locusts. Experimentally produced high concentrations of haemolymph carbohydrate caused a delay in the mobilization of lipid during flight, and very low titres of the hormone were present in the haemolymph of locusts injected with trehalose immediately before a 25 min flight. In these locusts flight speed was higher than saline-injected controls. Although delayed lipid mobilization during flight was also seen in locusts injected with sucrose, sucrose is not utilized for flight metabolism and flight speed was not increased by the injection. Tentative estimates of the release rate (c. 1000pg/20min flight) and half life (c. 20 min) of adipokinetic hormone during flight are made. The results described suggest that during flight the rate at which trehalose disappears from the haemolymph does not play a major role in the initiation of the release of adipokinetic hormone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号