首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 702 毫秒
1.
Petal abscission was studied in roses (Rosa hybrida L.), cvs.Korflapei (trade name Frisco), Sweet Promise (Sonia) and CaraMia (trade name as officially registered cultivar name). Unlikeflowers on plants in greenhouses, cut flowers placed in waterin the greenhouse produced visible symptoms of water stress,depending on the weather during the experiment and on the cultivar.Cut Frisco roses showed no visible signs of water stress andthe time to petal abscission was as in uncut flowers. In Soniaroses the symptoms of water stress varied from mild to severe,and the number of flowers in which the petals abscised variedfrom 100% (mild stress) to 0% (severe stress). An antimicrobialcompound in the vase water of Sonia roses, or removal of theleaves, alleviated the symptoms of water stress and increasedthe number of stems in which the petals abscised. Cut Cara Miaroses showed severe symptoms of water stress in all experimentsand petal abscission was found in only a few flowers, even whenthe stems were placed at 20 °C and low photon flux (15 µmolm-2s-1). Abscission in Sonia and Cara Mia roses was low or absentwhen the water potential of the leaves reached values below-2.0 MPa within the first 5 d of the experiment; such low valueswere not reached in Frisco roses. Addition of sucrose to the vase solution, together with an effectiveantimicrobial compound, had no effect on the time to petal abscission,at any light intensity. Placing flowers in far-red light alsohad no effect on abscission, compared with flowers placed inred light or white light of the same photon fluence. It is concluded that petal abscission in the rose cultivarsstudied is not affected by their water status unless the plantsreach a low water potential (about -2 MPa) early on during vaselife. Petal abscission is not inhibited by low light intensitynor affected by the Pr/Pfr ratio. Abscission; light intensity; petals; phytochrome; Rosa hybrida L.; rose; sugars; water potential  相似文献   

2.
Methyl glucoside andmyo-inositol are present in all organs ofrose (Rosa hybridaL.). To investigate the possible role of thesecarbohydrates in the opening of cut roses, flowers with a 10,20 or 40-cm-long stem and a single flower bud (about 1.5 cmin diameter) were placed in water and flower opening and changesin sugar content in flowers and stems examined for 7 d. Thelonger the stem of the cut flower, the larger was the flowerdiameter. In stems, the concentration of carbohydrates, includingmethyl glucoside andmyo-inositol markedly decreased before floweropening. In petals, contents of glucose, methyl glucoside andmyo-inositolalso decreased before flower opening, but those of fructose,sucrose and xylose did not. When glucose and methyl glucosidewere added to the vase water (4%) flower opening was clearlypromoted; this was accompanied by an increase in methyl glucosideand fructose concentrations in petals. On the contrary,myo-inositolinhibited flower opening, and this was accompanied by an increaseinmyo-inositol and xylose concentrations in petals. These resultssuggest that methyl glucoside and/or its metabolites are transportedinto the petal cells, thereby lowering the osmotic water potentialand promoting flower opening.Myo-inositol is not readily metabolized,and exogenousmyo-inositol given at a high concentration mayact as an extracellular osmolyte, which inhibits water uptakeand flower opening.Copyright 1999 Annals of Botany Company Cut flowers, methyl glucoside,myo-inositol,Rosa hybrida,soluble carbohydrate.  相似文献   

3.
Categories of Petal Senescence and Abscission: A Re-evaluation   总被引:6,自引:2,他引:4  
van Doorn  W. G. 《Annals of botany》2001,87(4):447-456
In a previous paper (Woltering and van Doorn, 1988, Journalof Experimental Botany39: 1605–1616) we identified threetypes of flower life cessation: by petal wilting or withering,which was either ethylene-sensitive or insensitive, and by abscissionof turgid petals, which was ethylene-sensitive. These categoriestended to be consistent within families. Here we re-examinethese relationships by testing a further 200 species, and anumber of other families. As previously, flowering shoots wereexposed to 3 ppm ethylene for 24 h at 20 °C, in darkness.Most monocotyledonous species tested showed ethylene-insensitivepetal wilting, although ethylene-sensitive wilting occurredin the Alismataceae and Commelinaceae. Petals of the dicotyledonousspecies tested were generally sensitive to ethylene, exceptfor a few groups showing wilting (Crassulaceae, Gentianaceaeand Fumariaceae, and one subfamily in both the Ericaceae andSaxifragaceae). Petal abscission was generally ethylene-sensitive,but ethylene insensitivity was found in some Tulipa cultivarsand three Saxifraga species. In most tulip cultivars tested,the petals wilted and then fell. It is concluded that (a) theresponse to ethylene is often consistent within either familiesor subfamilies; and (b) a fourth category, ethylene-insensitivepetal abscission, exists both in monocotyledons and dicotyledons.Copyright 2001 Annals of Botany Company Ethylene sensitivity, flower longevity, petal abscission, petal wilting, petal withering, petal senescence, taxonomic categories  相似文献   

4.
Burdon  J. N.; Sexton  R. 《Annals of botany》1993,72(4):289-294
The time-course of flower development of Rubus idaeus L. cv.Glen Clova was studied on detached buds opened in the laboratory.After sepal and petal opening petal abscission occurred withthe petals from an individual flower being shed over 3-4 h.Abscission was accompanied by a peak in ethylene production.Treatment of flowers with aminoethoxyvinylglycine eliminatedthe peak in ethylene production but did not prevent petal abscission.However, petal loss was much slower, taking place over a periodof days rather than hours. Abscission was more effectively retardedby silver thiosulphate. Exogenous ethylene accelerated the rateof petal abscission and senescence. The increase in ethyleneproduction coincident with petal abscission appears to accelerateand co-ordinate the shedding of the separate petals on an individualflower. If ethylene is important in the induction of abscissionit would appear that the low rate of production sustained inthe presence of aminoethoxyvinylglycine must be sufficient.Copyright1993, 1999 Academic Press Rubus idaeus L., raspberry, flower, petal, abscission, ethylene  相似文献   

5.
Yamada T  Ichimura K  van Doorn WG 《Planta》2007,226(5):1195-1205
Depending on the species, the end of flower life span is characterized by petal wilting or by abscission of petals that are still fully turgid. Wilting at the end of petal life is due to programmed cell death (PCD). It is not known whether the abscission of turgid petals is preceded by PCD. We studied some parameters that indicate PCD: chromatin condensation, a decrease in nuclear diameter, DNA fragmentation, and DNA content per nucleus, using Prunus yedoensis and Delphinium belladonna which both show abscission of turgid petals at the end of floral life. No DNA degradation, no chromatin condensation, and no change in nuclear volume was observed in P. yedoensis petals, prior to abscission. In abscising D. belladonna petals, in contrast, considerable DNA degradation was found, chromatin was condensed and the nuclear volume considerably reduced. Following abscission, the nuclear area in both species drastically increased, and the chromatin became unevenly distributed. Similar chromatin changes were observed after dehydration (24 h at 60°C) of petals severed at the time of flower opening, and in dehydrated petals of Ipomoea nil and Petunia hybrida, severed at the time of flower opening. In these flowers the petal life span is terminated by wilting rather than abscission. It is concluded that the abscission of turgid petals in D. belladonna was preceded by a number of PCD indicators, whereas no such evidence for PCD was found at the time of P. yedoensis petal abscission. Dehydration of the petal cells, after abscission, was associated with a remarkable nuclear morphology which was also found in younger petals subjected to dehydration. This nuclear morphology has apparently not been described previously, for any organism.  相似文献   

6.
Anatomy of Ethylene-induced Petal Abscission in Pelargonium x hortorum   总被引:1,自引:0,他引:1  
When viewed under the light microscope, the abscission zoneat the petal base of Pelargonium x hortorum consisted of smallcells which, when stained with Toluidine Blue, possessed denselystained cells walls. After treatment with 1 µl l-1 ethyleneat 22°C, the force required to separate the petals fromthe receptacle declined after a lag phase of only 30 min, withseparation complete 60-90 min later depending upon the stageof development of the flower. Transmission electron micrographsof the petal abscission zones showed evidence of cell wall degradation,particularly in the middle lamella. These cells also containedextensive rough endoplasmic reticulum and numerous Golgi bodiesribosomes. When abscission was complete, cells at the fractureface showed evidence of breakdown of cellular compartmentalization,often with little sign of an intact tonoplast. Scanning electronmicrographs of recently-abscissed surfaces showed that the epidermalcells surrounding the abscisson zone were turgid and rounded,whereas those of the mesophyll cells were partially collapsed.The micrographic evidence is consistent with the hypothesisthat ethylene-induced separation is caused by rapid enzymaticof the cell walls.Copyright 1993, 1999 Academic Press Abscission, cell walls, ethylene, flower, Pelargonium x hortorum  相似文献   

7.
The ethylene production rate of cut sweet pea flower buds increased37-fold during the first 48 h of their vase life. This increasein ethylene production was accompanied by petal wilting at 72h and abscission of the buds 24 h later. Exposure of the cutspikes to the ethylene action inhibitor diazocyclopentadiene(DACP, 170 µI 1-1) for 18 h under fluorescent lights delayedsubsequent wilting and abscission and promoted bud opening.Silver thiosulphate (0·2 mM) was more effective thanDACP, delaying wilting for longer and preventing abscissionentirely.Copyright 1995, 1999 Academic Press Ethylene, abscission, silver thiosulphate, diazocyclopentadiene, flower senescence, wilting, sweet pea, Lathyrus odoratus L  相似文献   

8.
HERBERT  S. J. 《Annals of botany》1979,43(1):55-63
In an August-sown experiment the pattern of flower developmentwas followed for cv. Ultra (Lupinus albus L.) and cv. Unicrop(L. angustifolius L.) grown at low (10 plants m–2) andhigh (93 and 83 plants m–2, Ultra and Unicrop respectively)densities. Dry weight increase of flowers on the main-stem inflorescenceand first lateral below the main-stem were compared at differentfloral stages. Maximum flower weight was reached just priorto the open flower stage and remained constant or declined untila pod formed or abscission occurred. The time period betweenmaximum flower weight and pod formation or abscission was upto 10 days. Emergence of the inflorescence was earlier and thefirst flower of Ultra opened 10 days before Unicrop. Developmentof each terminal raceme (inflorescence) was acropetal, withpods having formed on lower flower nodes when terminal flowerswere still quite immature. Laterals forming the next generationof inflorescences grew from axillary leaf buds below an inflorescencewhile it was in full flower. Sources of competition from connectedreproductive and vegetative metabolic sinks are discussed. Lupinus spp., lupins, flower development, planting density  相似文献   

9.
The relationships between ethylene production, aminocyclopropane-1-carboxylicacid (ACC) content and ethylene-forming-enzyme (EFE) activityduring ageing and cold storage of rose flower petals (Rose hybridaL. cv. Gabriella) were investigated. During flower ageing at20 °C there was a climacteric rise in petal ethylene production,a parallel increase in ACC content, but a continuous decreasein EFE activity. Applied ACC increased petal ethylene productionc. 200-fold. During cold storage of flowers at 1 °C therewere parallel increases in petal ethylene production and ACCcontent, to levels greater than those reached in fresh flowersheld at 20 °C. EFE activity decreased during storage. Immediatelyafter cold-stored flowers were transferred to 20 °C ethyleneproduction and ACC levels were c. four times greater than infreshly cut flowers. These levels increased to maximum valuesof two to four times the maximum values reached during ageingof fresh, unstored, flowers. It was concluded that in rose petalsethylene synthesis is probably regulated by ACC levels and thatcold storage stimulates ethylene synthesis because it increasesthe levels of ACC in the petals. Key words: Rose flower, senescence, ethylene  相似文献   

10.
Non-dormant flower initials are laid down in the axils of successiveleaf initials as they are formed by the apical meristem of Pisumsativum L. In cultivars with a maximum capability of two flowersper raceme, the undeveloped flower meristem divides into twoportions. One forms the first flower and the other either developsinto a small protrusion on one side of the first flower or becomesthe second flower, depending on the prevailing environment.Flower development in conditions favouring single-flowered racemeswas advanced by one plastochron. Variation in the number offlowers per raceme occurs between cultivars and between environments.The number of double flowers formed was favoured by higher lightintensity (120 Js–1 m–2) and carbon dioxide concentration(330 µ11) and lower temperature (15°C). Incultivars producing more than two flowers per raceme, lowerlight intensity (60 Js–1 m–2) plus higher temperature(20°C) increased the mean number of flowers per raceme.Soluble sugar levels in all varieties were higher (36.05 mgeq glucose g–1 fresh weight) in the low temperature/highlight environment than the high temperature/low light environment(14.80 mg eq glucose g–1 fresh weight). The flowering potential and stability of 13 cultivars have beenassessed in controlled environment and in sowing date trialsin the field. A stable variety, which consistently producedtwo flowers per raceme, was identified in controlled environmentand its stability was maintained in field trials. A linear regressionof stability of flower number in the field on stability in controlledenvironment accounted for 89.6 per cent of the variance (P<5per cent), but the flowering potential in a sowing date experimentwas not related to temperature or radiation intensity.  相似文献   

11.
ALONI  B.; PASHKAR  T.; KARNI  L. 《Annals of botany》1991,67(5):371-377
The effect of heat stress on processes related to carbohydratepartitioning was investigated in young bell pepper (Capsicumannum L. cv. Maor) plants in relation to abscission of theirreproductive organs at different stages of development. None of the reproductive organs abscised after 5 d in a normalday/night temperature regime (25/18°C). With a temperatureregime of 35°C day, 25°C night, abscission occurredin only a small portion of the flower buds and none of the flowersand fruitlets. However, when temperatures in the day and nightwere reversed (25/35°C, day/night) all the buds and someof the flowers abscised during that time period. The young fruitat the first node did not abscise under any temperature regime.The abscission rate of the flower buds was reduced under heatstress if the developing fruit at the first node had been removed. High temperature during either the light or dark periods reducedthe export of [14C]sucrose from the source leaf (fed for 48h with [14C]sucrose). Both heat stress and fruit presence reduced the relative amountof [14C]sucrose which was exported to the flower buds, flowersand roots. Likewise, these treatments reduced the concentrationof reducing sugars in the reproductive organs. Concomitantly,the heat stress and fruit presence on the first node reducedthe activity of soluble acid invertase in the flower buds andthe roots, but not in young leaves. Overall, the results show that heat stress causes alternationin sucrose distribution in the plant, but may also have specificeffects on metabolic activities related to sucrose import andutilization in flower buds and flowers which in turn may enhancetheir abscission. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acidinvertase, heat stress, reproductive organs, sink leaves. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acid invertase, heat stress, reproductive organs, sink leaves.  相似文献   

12.
B.  ALONI; T.  PASHKAR; L.  KARNI 《Annals of botany》1991,67(4):371-377
The effect of heat stress on processes related to carbohydratepartitioning was investigated in young bell pepper (Capsicumannum L. cv. Maor) plants in relation to abscission of theirreproductive organs at different stages of development. None of the reproductive organs abscised after 5 d in a normalday/night temperature regime (25/18 °C). With a temperatureregime of 35 °C day, 25 °C night, abscission occurredin only a small portion of the flower buds and none of the flowersand fruitlets. However, when temperatures in the day and nightwere reversed (25/35 °C, day/night) all the buds and someof the flowers abscised during that time period. The young fruitat the first node did not abscise under any temperature regime.The abscission rate of the flower buds was reduced under heatstress if the developing fruit at the first node had been removed. High temperature during either the light or dark periods reducedthe export of [14C]sucrose from the source leaf (fed for 48h with [14C]sucrose). Both heat stress and fruit presence reduced the relative amountof [14C]sucrose which was exported to the flower buds, flowersand roots. Likewise, these treatments reduced the concentrationof reducing sugars in the reproductive organs. Concomitantly,the heat stress and fruit presence on the first node reducedthe activity of soluble acid invertase in the flower buds andthe roots, but not in young leaves. Overall, the results show that heat stress causes alternationin sucrose distribution in the plant, but may also have specificeffects on metabolic activities related to sucrose import andutilization in flower buds and flowers which in turn may enhancetheir abscission. Bell pepper, (Capsicum annuum L. cv. Maor), abscission, acid invertase, heat stress, reproductive organs, sink leaves  相似文献   

13.
With respect to intravarietal variability, the petals of 15rose (Rosa x hybrida) varieties, representative of the colourrange expressed by modern roses primarily pigmented with anthocyanins,were investigated from chemical and. colorimetric viewpoints.Depending on the variety, the observed colour variations werebased on a more or less complex mixture of cyanidin 3,5-diglucoside,pelargonidin 3,5-diglucoside, quercetin and kaempferol glycosides.The total anthocyanin content ranged from 4 to 109 mg g–1petal dry wt., while the total amount of flavonol glycosideswas never less than 8 mg g–1 and could reach 136 mg g–1petal dry wt. Between cultivars, the pH of the petal outer epidermisvaried from 3·6 to 5·4 units. Using a spectrocolorimeter,the petal colour of each variety was measured. In order to allowquantitative comparisons of colours, the reflectance curveswere further translated into indices calculated using the CIELabsystem. In the aggregate, there were good correlations betweenchemical parameters and colorimetric indices that are lightness(L*), chroma (C*) and hue angle (h). Both of these criteria(chemical and colorimetric) appeared sufficient to explain thevisual sense of the petal colour. Key words: Rose, colour, flavonoid, colorimetry, CIELab system  相似文献   

14.
Abortion of pepper flowers depends on the light intensity perceivedby the plant and on the amounts of sucrose taken up by the flower(Aloni B, Karni L, Zaidman Z, Schaffer AA. 1996.Annals of Botany78: 163–168). We hypothesize that changes in the activityof sucrose-cleaving enzymes within the flower ovary might beresponsible for the changes in flower abortion under differentlight conditions. In the present study we report that the activityof sucrose synthase, but not of cytosolic acid invertase, increasesin flowers of pepper plants which were exposed, for 2 d, toincreasing photosynthetically active radiation (PAR) in therange of 85–400 µmol m-2s-1at midday. Sucrose synthaseactivity increased in parallel with the increasing concentrationsof starch in the flower ovary. Feeding flower explants, preparedfrom 3-d-predarkened plants, with 100 mM sucrose for 24 h, causeda 23% increase in reducing sugars and a 2.5-fold increase instarch concentration, compared with explants fed with buffer.Likewise, feeding explants of pepper flowers with sucrose, glucose,fructose and also mannitol increased the sucrose synthase activityin the ovaries. Concomitantly, sucrose, glucose and fructose,but not mannitol, reduced the abortion of flower explants. Itis suggested that sucrose entry into the flower increases theflower sink activity by inhibiting abscission and inducing metabolicchanges, thus enhancing flower set. Pepper; Capsicum annuum L.; abscission; light; pepper flowers; sucrose; glucose; fructose; starch; acid invertase; sucrose synthase  相似文献   

15.
Abscission of pepper flowers is enhanced under conditions oflow light and high temperature. Our study shows that pepperflowers accumulate assimilates, particularly in the ovary, duringthe day time, and accumulate starch, which is then metabolizedin the subsequent dark period. With the exception of the petals,the ovary contains the highest total amounts of sugars and starch,compared with other flower parts and contains the highest totalactivity, as well as activity calculated on fresh mass basis,of sucrose synthase, in accordance with the role of this enzymein starch biosynthesis. Low light intensity or leaf removaldecreased sugar accumulation in the flower and subsequentlycaused flower abscission. The threshold of light intensity fordaily sugar accumulation in the sink leaves was much lower thanin flowers, resulting in higher daytime accumulation of sugarsin the sink leaves than in the adjacent flower buds under anylight intensity, suggesting a competition for assimilates betweenthese organs. Flowers of bell pepper cv. ‘Maor’and ‘899’ (sensitive to abscission) accumulatedless soluble sugars and starch under shade than the flowersof bell pepper cv. ‘Mazurka’ and of paprika cv.‘Lehava’ (less sensitive). The results suggest thatthe flower capacity to accumulate sugars and starch during theday is an important factor in determining flower retention andfruit set. Pepper; Capsicum annuum L.; abscission; shading; pepper flowers; ovary; leaves; sugars; starch; acid invertase; sucrose synthase  相似文献   

16.
The never ripe mutation blocks ethylene perception in tomato.   总被引:19,自引:1,他引:18       下载免费PDF全文
Seedlings of tomato fruit ripening mutants were screened for their ability to respond to ethylene. Ethylene induced the triple response in etiolated hypocotyls of all tomato ripening mutants tested except for one, Never ripe (Nr). Our results indicated that the lack of ripening in this mutant is caused by ethylene insensitivity. Segregation analysis indicated that Nr-associated ethylene insensitivity is a single codominant trait and is pleiotropic, blocking senescence and abscission of flowers and the epinastic response of petioles. In normal tomato flowers, petal abscission and senescence occur 4 to 5 days after the flower opens and precede fruit expansion. If fertilization does not occur, pedicel abscission occurs 5 to 8 days after petal senescence. If unfertilized, Nr flowers remained attached to the plant indefinitely, and petals remained viable and turgid more than four times longer than their normal counterparts. Fruit development in Nr plants was not preceded by petal senescence; petals and anthers remained attached until they were physically displaced by the expanding ovary. Analysis of engineered 1-aminocyclopropane-1-carboxylate (ACC) synthase-overexpressing plants indicated that they are phenotypic opposites of Nr plants. Constitutive expression of ACC synthase in tomato plants resulted in high rates of ethylene production by many tissues of the plant and induced petiole epinasty and premature senescence and abscission of flowers, usually before anthesis. There were no obvious effects on senescence in leaves of ACC synthase overexpressers, suggesting that although ethylene may be important, it is not sufficient to cause tomato leaf senescence; other signals are clearly involved.  相似文献   

17.
To investigate the effect of intraspecific competition on floweringin Brassica napus‘Westar’, a series of 30 pots wasestablished that spanned a range of one–96 plants perpot. In each pot, the following attributes of individual flowerswere quantified: petal length; petal width; stamen length; pistillength; pollen production; diameter of pollen grains; and nectarproduction. Certain plants contained a transgenic marker thatenabled the vigour of their pollen to be quantified by screeningthe progeny from post-pollination trials against conventionalmale competitors. Plant size was strongly affected by plantdensity; plants in the lowest density pots comprised ten-timesmore dry biomass than individuals in the highest density pots.However, none of the attributes of individual flowers variedwith density. In contrast, the number of flowers per plant declinedrapidly with density. In the face of resource scarcity, theplants apparently conserved flower size rather than flower number.There was no difference in the response to density between transgenicand conventional plants, but transgenic plants obtained morefertilizations than expected in post-pollination competitionagainst conventional competitors. A separate experiment demonstratedthat B. napus is, nevertheless, capable of plasticity in certainflower attributes (petal size, stamen length) in response todefoliation. Explanations for the stability of flower size relativeto flower number are discussed. Copyright 2001 Annals of BotanyCompany Brassica napus, defoliation, density effects, flowers, flower size, intraspecific competition, nectar production, oilseed rape, pollination, transgenic plants  相似文献   

18.
19.
The interrelationships between simultaneously developing organsof citrus flowers were investigated. Examination of flower organgrowth kinetics shows that petals grow mainly through enhancedwater absorption whereas ovaries accumulate a high percentageof dry matter. Using excised flowers implanted in an agar—sucrose mediumand supplied with [14C]-sucrose, [3H]-acetate, and [14C]-acetate,a characteristic distribution of label among organs could beestablished for each isotope. Wounding or application of -naphthaleneacetic acid (NAA) toa single petal completely changed the normal distribution patterns,shifting the bulk of [14C]-sucrose towards the treated organs. The findings are interpreted in the light of the ‘sink’hypothesis. It is proposed that each flower organ meristem createsa sink of its own which acts in a typical manner according toits specific endogenous hormonal balance. The sink activityof all meristems in concert results in a sensitive regulatorymechanism which is responsible for the coordination observedin flower development.  相似文献   

20.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号