首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The question of a role for water in biochemical and cellular events is ignored by most workers (apart from its obvious role in hydrolysis reactions, which is not under discussion here). But much recent research has pointed to the importance of physical, as well as biochemical, processes of the cell, which focus attention on such straightforward elementary questions as position and relationship in space of cell components. In this communication these questions are examined in terms of a new model of water structure. A radically new feature of this model is that water clusters have long-term rather than flickering existence and are as large as the macromolecular components of the cell. These properties allow the clusters and other components to pack together spatially so giving rise to integrated, large-scale, subcellular structures.  相似文献   

2.
This paper investigates an alternative explanation for widely reported paradoxical intracellular water properties. The most frequent biological explanation assumes water structure extending multiple layers from surfaces of compactly folded macromolecules to explain large amounts of perturbed water. Long range water structuring, however, contradicts molecular models widely accepted by the scientific majority. This study questions whether the paradoxical cell water could result from larger than expected amounts of first layer interfacial water on internal protein surfaces rather than structured multilayers. Native mammalian tendon is selected for the study because (1) the organ consists of highly compact structures of a single macromolecular protein--collagen, (2) molecular structure and geometry of collagen is well characterized by X-ray diffraction, (3) molecular structure extends to the macroscopic tendon level and (4) perturbed water behavior similar to cellular water is reported on tendon. Native tendon holds 1.6 g water/g dry mass. The 62% native water content simulates the water content of many cell types. MicroCT studies of tendon dilatometry as a function of hydration are measured and correlated to X-ray diffraction measurements of interaxial separation. Correlations show that native tendon has sufficient water for only a single monolayer of interfacial water. Thus the paradoxical properties of water in native tendon are first-layer interfacial water properties. Similar water behavior on globular proteins suggests that paradoxical cell water behavior could be caused by larger than expected amounts of first layer interfacial water on internal and external macromolecular surfaces of cell components.  相似文献   

3.
This report describes and documents the presence of multiple water-of-hydration fractions on proteins and in cells. Initial studies of hydration fractions in g of water/g of DM (dry mass) for tendon/collagen led to the development of the molecular SHM (stoichiometric hydration model) and the development of methods for calculating the size of hydration fractions on a number of different proteins of known amino acid composition. The water fractions have differences in molecular motion and other physical properties due to electrostatic interactions of polar water molecules with electric fields generated by covalently bound pairs of opposite partial charge on the protein backbone. The methods allow calculation of the size of four hydration fractions: single water bridges, double water bridges, dielectric water clusters over polar-hydrophilic surfaces and water clusters over hydrophobic surfaces. These four fractions provide monolayer water coverage. The predicted SHM hydration fractions match closely measured hydration fraction values for collagen and for globular proteins. This report also presents water sorption findings that support the SHM. The SHM is applicable for cell systems where it has been studied. In seven cell systems studied, more than half of all of the cell water had properties unlike those of bulk water. The SHM predicts and explains the commonly cited and measured bound water fraction of 0.2-0.4 g of water/g of DM on proteins. The commonly accepted concept that water beyond this bound water fraction can be considered bulk-like water in its physical properties is unwarranted.  相似文献   

4.
Understanding biological function requires the identification and characterization of complex patterns of molecules. Single-molecule localization microscopy (SMLM) can quantitatively measure molecular components and interactions at resolutions far beyond the diffraction limit, but this information is only useful if these patterns can be quantified and interpreted. We provide a new approach for the analysis of SMLM data that develops the concept of structures and super-structures formed by interconnected elements, such as smaller protein clusters. Using a formal framework and a parameter-free algorithm, (super-)structures formed from smaller components are found to be abundant in classes of nuclear proteins, such as heterogeneous nuclear ribonucleoprotein particles (hnRNPs), but are absent from ceramides located in the plasma membrane. We suggest that mesoscopic structures formed by interconnected protein clusters are common within the nucleus and have an important role in the organization and function of the genome. Our algorithm, SuperStructure, can be used to analyze and explore complex SMLM data and extract functionally relevant information.  相似文献   

5.
6.
A significant amount of work has been expended to identify the elusive components of plasmodesmata (PD) to help understand their structure, as well as how proteins are targeted to them. This review focuses on the role that lipid membranes may play in defining PD both structurally and as subcellular targeting addresses. Parallels are drawn to findings in other areas of research which focus on the lateral segregation of membrane domains and the generation of three-dimensional organellar shapes from flat lipid bilayers. We conclude that consideration of the protein–lipid interactions in cell biological studies of PD components and PD-targeted proteins may yield new insights into some of the many open questions regarding these unique structures.  相似文献   

7.
Large-scale molecular assemblies, or signaling clusters, at the cell membrane are emerging as important regulators of cell signaling. Here, we review new findings and describe shared characteristics common to signaling clusters from a diverse set of cellular systems. The well-known T cell receptor cluster serves as our paradigmatic model. Specifically, each cluster initiates recruitment of hundreds of molecules to the membrane, interacts with the actin cytoskeleton, and contains a significant fraction of the entire signaling process. Probed by recent advancements in patterning and microscopy techniques, the signaling clusters display functional outcomes that are not readily predictable from the individual components.  相似文献   

8.
Cell migration during morphogenesis   总被引:1,自引:0,他引:1  
  相似文献   

9.
The simplest form of macromolecular design involves the ligation of nucleic acids. Recent results on the concatenation of nucleic acid junctions show that these molecules can act as fairly rigid macromolecular valence clusters on the nanometer scale. These clusters can be joined to form closed stick figures in which each edge is double helical DNA or RNA and each vertex is a nucleic acid junction. The geometrical criteria for forming discrete-closed and periodic structures from these components are established. The helicity of each edge limits the possible structures that can be formed. The formation of a periodic array from nucleic acid junction building blocks is compared with the crystallization of molecular systems. This comparison leads to a new interpretation of the nature of order in the solid state for molecular crystals. The suggestion is made that the structure of a solid molecular system described by the fewest unique orthogonal (Fourier) components is the one which will be entropically favored, since it contains the least information. This is the crystalline state, with a small number of molecules per asymmetric unit. The free energy from the proposed entropic driving force responsible for this behavior is available, in principle, to correct small deviations from ideality in forming covalent crystals from nucleic acid junction components, as well as in non-bonded molecular systems. Nucleic acid junction periodic arrays provide an appropriate vehicle with which to test this interpretation.  相似文献   

10.
11.
In response to treatment with 17β-estradiol, MCF-7 human breast carcinoma cells undergo a marked rearrangement of the F-actin cytoskeleton. The most conspicuous aspect of this rearrangement is the formation of an extensive array of lamellipodial structures which are situated beneath cell clusters. Treatment of cells with 17β-estradiol in the presence of the anti-estrogen ICI182,780 suppressed the development of the lamellipodial structures, indicating that this cytoskeletal rearrangement is mediated by the estrogen receptor. Time-lapse, video-enhanced, differential interference contrast microscopy reveals that the lamellipodial structures are actively motile beneath cell clusters. Furthermore, the lamellipodial structures form few focal contacts with the underlying substrate of the coverslip, as evidenced by either interference reflection microscopy or staining for the focal contact protein talin, indicating that these structures are not strongly adhered to the substratum. Immunofluorescence localization of E-cadherin indicates that this cell–cell adhesion receptor is present within these structures as either adhesion plaque- or point contact-like depositions. These findings implicate the cadherin-based cell–cell adhesion system in supporting tumor cell motility over adjacent cell surfaces via discrete adhesive structures which are associated with motile lamellipodia. Accepted: 1 September 1999  相似文献   

12.
13.
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.  相似文献   

14.
Abstract

The simplest form of macromolecular design involves the ligation of nucleic acids. Recent results on the concatenation of nucleic acid junctions show that these molecules can act as fairly rigid macromolecular valence clusters on the nanometer scale. These clusters can be joined to form closed stick figures in which each edge is double helical DNA or RNA and each vertex is a nucleic acid junction. The geometrical criteria for forming discrete-closed and periodic structures from these components are established. The helicity of each edge limits the possible structures that can be formed.

The formation of a periodic array from nucleic acid junction building blocks is compared with the crystallization of molecular systems. This comparison leads to a new interpretation of the nature of order in the solid state for molecular crystals. The suggestion is made that the structure of a solid molecular system described by the fewest unique orthogonal (Fourier) components is the one which will be entropically favored, since it contains the least information. This is the crystalline state, with a small number of molecules per asymmetric unit. The free energy from the proposed entropie driving force responsible for this behavior is available, in principle, to correct small deviations from ideality in forming covalent crystals from nucleic acid junction components, as well as in non-bonded molecular systems. Nucleic acid junction periodic arrays provide an appropriate vehicle with which to test this interpretation.  相似文献   

15.
BackgroundThe availability of high-resolution X-ray structures has shown that proteins contain numerous water molecules, but their role is still not fully understood. Protonated and deprotonated water species are often involved in biochemical reactions. However protons are exceedingly difficult to detect directly because they are electron-poor species.MethodsThe oxygen‑oxygen distance of the crystallographic water molecules was analyzed in a large high-resolution data set. Moreover, a detailed analysis was carried out on the protein-bound water in the available structures of carbonic anhydrase II and cytochrome c oxidase, chosen as protein models in which protonated and deprotonated water species play a significant role.ResultsThe analysis shows an excess of water-water distances below the expected value for hydrogen bond. In the cavities and on the surface of the considered model proteins, clusters of water molecules are found, whose structure suggests the presence of chemical species deriving from self-ionization of water.ConclusionsThe presence of a small maximum below the hydrogen bond threshold in the oxygen‑oxygen distance distribution of crystallographic water molecules, along with the location of many of these water clusters, suggest the presence of Zundel-like structures in, or near, the proteins. Particularly significant is the presence of such structures in protein regions which have been identified as proton antennae or channels.General significanceThis work shows the possibilities, still unexplored, offered by this type of analysis in detecting in structures obtained by X-ray diffraction the presence of aqueous protons or hydroxide ions, which are chemical species as important as elusive.  相似文献   

16.
17.
This communication presents a new picture of protein and solvent in which they are much more closely related both structurally and functionally than hitherto described. The picture is based on the recently published model of liquid structure, which proposes that clusters in water have long-term rather than flickering existence and are as large as proteins. Their spacial dimensions ensure that the two structures have a mutual tendency to pack together and cooperate in their vibrational motion.  相似文献   

18.
A set of conserved water positions making direct contacts with the alpha1 and alpha2 domains of the MHC class-I protein was identified by a cluster analysis in 12 high-resolution crystal structures of proteins from different allele types and different species, comprising human, mouse and rat. The analysis revealed a total of 63 clusters, corresponding to water molecules, whose positions are conserved in half or more of the analyzed structures. Analysis of these clusters shows that the most conserved water positions-those appearing in the largest fraction of the structures-were also the most accurately defined, as measured by their normalized crystallographic B-factor. Not too surprisingly, these positions displayed better overlap and formed more H-bonds with the protein. In a second part of this work, a detailed analysis is presented of three of the most conserved water positions and their putative structural and functional roles are discussed. The most highly conserved of the three appears to play an important role in stabilizing the conformation of a twisted beta-turn between residues 118 and 122 (numbering of HLA-B3501, PDB code 1A1N). An equivalent water molecule was found to be associated with a similar beta-turn in 43 unrelated structures surveyed in the PDB, leading to the suggestion that this water molecule plays an important structural role in this type of turn. The second water molecule makes hydrogen bonds with residues lining pocket B in the peptide-binding groove and is suggested to play a role in modulating peptide recognition. The third highly conserved water molecule is located at the first kink of the alpha2 helix, possibly playing a role in determining the position of the N-terminal segment of that helix, which also carries side chains in contact with the bound peptide. This information on conserved water positions in MHC class-I molecules should be helpful in modeling interactions with bound peptide antigens and in designing new peptides with tailor-made affinities.  相似文献   

19.
A MODEL FOR DEVELOPMENT AND EVOLUTION OF COMPLEX MORPHOLOGICAL STRUCTURES   总被引:14,自引:0,他引:14  
How 'complex' or composite morphological structures like the mammalian craniomandibular region arise during development and how they are altered during evolution are two major unresolved questions in biology. Herein, we have described a model for the development and evolution of complex morphological structures. The model assumes that natural selection acts upon an array of phenotypes generated by variation in a variety of underlying genetic and epigenetic controlling factors. Selection refines the integration of the various morphogenetic components during ontogeny in order to produce a functioning structure and to adapt the organisms to differing patterns of environmental heterogeneity. The model was applied to the development and evolution of the mammalian mandible (which is used as a paradigm of complex morphological structures). The embryology of the mandible was examined in detail in order to identify the fundamental developmental units which are necessary to assemble the final morphological structure. The model is quite general since equivalent units exist for the development of many other biological structures. This model could be applied to many other developing morphological structures as well as other groups of organisms. For example, it can be applied to cell parameters during Drosophila development (Atchley, 1987). The model as discussed in this paper assumes that morphological changes in the mandible result from evolutionary changes in its underlying developmental units. The developmental units relate to characteristics of cellular condensations which are produced from the differentiation of embryonic neural crest cells. The developmental units include: the number of stem cells in preskeletal condensations (n), the time of initiation of condensation formation (t), the fraction of cells that is mitotically active within a condensation (f), the rate of division of these cells (r), and their rate of cell death (d). These units and their derivative structures are discussed in terms of types of tissue differentiation (chondrogenesis, osteogenesis, primary/secondary osteogenesis, intramembranous/endochondral ossification) and growth properties of major morphological regions of the mandible. Variation in these five units provides the developmental basis for ontogenetic and phylogenetic modification of mandibular morphology. We have discussed how these developmental units are influenced by (a) the cell lineage from which they arise, (b) epithelial-mesenchymal (inductive tissue) interactions, (c) regulation of cell differentiation, and (d) extrinsic factors such as muscles, teeth and hormones. Evidence was provided that variation in mandibular morphology is heritable, subject to modification by natural selection, and that divergence among different genetic stocks has apparently occurred through changes in these developmental units and their derivative structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Making a zebrafish kidney: a tale of two tubes   总被引:3,自引:0,他引:3  
The kidney can be thought of as the pairing of two tubes: an epithelial tube (the nephron), carrying filtered blood and engaged in ion and water transport; and endothelial tubes (the blood vessels), delivering blood and carrying away recovered solute. The development of the nephron presents several interesting questions. How does an epithelial tube form and how is it patterned into functionally distinct components and segments? What guides the interaction between the vasculature and kidney epithelia? How are epithelial cell shape and lumen diameter maintained, and what goes wrong when kidney tubules balloon into cysts? Here, I outline the progress that has been made in answering these questions using the zebrafish pronephros as a simple, accessible model of nephron development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号