首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA interference: potential therapeutic targets   总被引:2,自引:0,他引:2  
One of the most exciting findings in recent years has been the discovery of RNA interference (RNAi). RNAi methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. The use of RNAi for genetic-based therapies has been widely studied, especially in viral infections, cancers, and inherited genetic disorders. As such, RNAi technology is a potentially useful method to develop highly specific dsRNA-based gene-silencing therapeutics.  相似文献   

2.
Alternative RNA processing of the heavy-chain immunoglobulin mu gene is regulated during B-cell maturation and requires competition between splice and cleavage-polyadenylation reactions that have balanced efficiencies. Studies with modified mu genes have failed to identify gene-specific sequences required for regulation. Thus, the only important feature for regulation may be the balanced competing splice and cleavage-polyadenylation reactions themselves. If this is so, then alternative RNA processing from any gene with similar competitive RNA processing pathways should also be regulated when expression is compared between B cells and plasma cells. To test this prediction, two nonimmunoglobulin genes engineered to have competing splice and cleavage-polyadenylation reactions were expressed in B cells and plasma cells. The ratios of alternative RNAs produced from both genes are different in the two cell types; like the mu gene, relatively more spliced RNA is produced in B cells than in plasma cells. Also, in a survey of mu gene expression in nine non-B-cell lines, only a T-cell line had an expression pattern similar to that of B cells; the expression patterns of all other lines resembled that of the plasma cells. Therefore, regulated mu RNA processing must be mediated by changes in general processing factors whose activity or abundance is regulated, most likely, in B cells.  相似文献   

3.
RNA interference: roles in fungal biology   总被引:1,自引:0,他引:1  
The discovery of RNA interference (RNAi) has been the major recent breakthrough in biology. Only a few years after its discovery, RNAi has rapidly become a powerful reverse genetic tool, especially in organisms where gene targeting is inefficient and/or time-consuming. In filamentous fungi, RNAi is not currently used as widely as is gene targeting by homologous recombination that works with practical efficiencies in most model fungal species. However, to explore gene function in filamentous fungi, RNAi has the potential to offer new, efficient tools that gene disruption methods cannot provide. In this review, possible advantages and disadvantages of RNAi for fungal biology in the postgenomics era will be discussed. In addition, we will briefly review recent discoveries on RNAi-related biological phenomena (RNA silencing) in fungi.  相似文献   

4.
5.
Non protein-coding RNAs (ncRNAs) are a research hotspot in bioinformatics. Recent discoveries have revealed new ncRNA families performing a variety of roles, from gene expression regulation to catalytic activities. It is also believed that other families are still to be unveiled. Computational methods developed for protein coding genes often fail when searching for ncRNAs. Noncoding RNAs functionality is often heavily dependent on their secondary structure, which makes gene discovery very different from protein coding RNA genes. This motivated the development of specific methods for ncRNA research. This article reviews the main approaches used to identify ncRNAs and predict secondary structure. During the execution of this work, AML was supported by CAPES fellowship.  相似文献   

6.
7.
8.
9.
10.
Catalysis by RNA   总被引:3,自引:0,他引:3  
Until the discovery of catalytic RNA, the notion that all enzymes are proteins had seemed incontrovertible. Now the existence of RNA enzymes has been confirmed in a variety of contexts. What is known about the chemistry of RNA-catalyzed reactions is reviewed below, with particular attention to the self-splicing rRNA intron of Tetrahymena thermophila and the processing of pre-tRNA molecules by RNase P.  相似文献   

11.
12.
13.
Both cis elements and host cell proteins can significantly affect HIV-1 RNA processing and viral gene expression. Previously, we determined that the exon splicing silencer (ESS3) within the terminal exon of HIV-1 not only reduces use of the adjacent 3' splice site but also prevents Rev-induced export of the unspliced viral RNA to the cytoplasm. In this report, we demonstrate that loss of unspliced viral RNA export is correlated with the inhibition of 3' end processing by the ESS3. Furthermore, we find that the host factor Sam68, a stimulator of HIV-1 protein expression, is able to reverse the block to viral RNA export mediated by the ESS3. The reversal is associated with a stimulation of 3' end processing of the unspliced viral RNA. Our findings identify a novel activity for the ESS3 and Sam68 in regulating HIV-1 RNA polyadenylation. Furthermore, the observations provide an explanation for how Sam68, an exclusively nuclear protein, modulates cytoplasmic utilization of the affected RNAs. Our finding that Sam68 is also able to enhance 3' end processing of a heterologous RNA raises the possibility that it may play a similar role in regulating host gene expression.  相似文献   

14.
RNA interference (RNAi) is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-stranded RNA molecules. RNAi has now been demonstrated to function in mammalian cells to alter gene expression, and has been used as a means for genetic discovery as well as a possible strategy for genetic correction. RNAi was first described in animal cells by Fire and colleagues in the nematode, Caenorhabditis elegans. Knowledge of RNAi mechanism in mammalian cell in 2001 brought a storm in the field of drug discovery. During the past few years scientists all over the world are focusing on exploiting the therapeutic potential of RNAi for identifying a new class of therapeutics. The applications of RNAi in medicine are unlimited because all cells possess RNAi machinery and hence all genes can be potential targets for therapy. RNAi can be developed as an endogenous host defense mechanism against many infections and diseases. Several studies have demonstrated therapeutic benefits of small interfering RNAs and micro RNAs in animal models. This has led to the rapid advancement of the technique from research discovery to clinical trials.  相似文献   

15.
RNA Interference. An Approach to Produce Knockout Organisms and Cell Lines   总被引:1,自引:0,他引:1  
In various eucaryotic organisms double-stranded RNA causes effective degradation of homologous mRNA molecules by a process called RNA interference. RNA interference is a phenomenon associated with gene suppression via regulatory RNA molecules, which are common in plants, animals, and fungi. The discovery of RNA interference stimulated the development of new approaches for suppression of target gene expression, production of stable knockout cell lines and organisms, and also stimulated studies on possible intracellular functions of this phenomenon.  相似文献   

16.
RNA interference: listening to the sound of silence   总被引:80,自引:0,他引:80  
The term RNA interference (RNAi) describes the use of double-stranded RNA to target specific mRNAs for degradation, thereby silencing their expression. RNAi is one manifestation of a broad class of RNA silencing phenomena that are found in plants, animals and fungi. The discovery of RNAi has changed our understanding of how cells guard their genomes, led to the development of new strategies for blocking gene function, and may yet yield RNA-based drugs to treat human disease.  相似文献   

17.
Flock House virus (FHV), the best studied of the animal nodaviruses, has been used as a model for positive-strand RNA virus research. As one approach to identify host genes that affect FHV RNA replication, we performed a genome-wide analysis using a yeast single gene deletion library and a modified, reporter gene-expressing FHV derivative. A total of 4,491 yeast deletion mutants were tested for their ability to support FHV replication. Candidates for host genes modulating FHV replication were selected based on the initial genome-wide reporter gene assay and validated in repeated Northern blot assays for their ability to support wild type FHV RNA1 replication. Overall, 65 deletion strains were confirmed to show significant changes in the replication of both FHV genomic RNA1 and sub-genomic RNA3 with a false discovery rate of 5%. Among them, eight genes support FHV replication, since their deletion significantly reduced viral RNA accumulation, while 57 genes limit FHV replication, since their deletion increased FHV RNA accumulation. Of the gene products implicated in affecting FHV replication, three are localized to mitochondria, where FHV RNA replication occurs, 16 normally reside in the nucleus and may have indirect roles in FHV replication, and the remaining 46 are in the cytoplasm, with functions enriched in translation, RNA processing and trafficking.  相似文献   

18.
RNA干涉的研究进展   总被引:34,自引:0,他引:34  
生物体内导入双链RNA后会引起体内同源基因特异性的沉默,这种现象称为RNA干涉,本主要介绍RNA干涉的研究历史,作用机制和应用等方面的情况。  相似文献   

19.
20.
RNA 沉默的病毒抑制子   总被引:2,自引:0,他引:2  
RNA 沉默是一种在真核生物体内普遍保守的、通过核酸序列特异性的相互作用来抑制基因表达的调控机制 . RNA 沉默的一种重要生物学效应是防御病毒的侵染,而针对寄主的这种防御机制,许多植物病毒已演化通过编码 RNA 沉默的抑制子来克服这种防御反应 . 目前,已从植物、动物和人类病毒中鉴定了 20 多种 RNA 沉默的抑制子,围绕抑制子的鉴定和作用机理研究已成为病毒学研究的一个热点 . 对 RNA 沉默抑制子的发现、鉴定方法、作用机理及与病毒病症状形成的关系、动物病毒的沉默抑制子等方面的最新进展做了综述,并对沉默抑制子的应用和存在的问题进行了讨论 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号