首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic remodeling of the actinomyosin cytoskeleton is integral to many biological processes. It is regulated, in part, by myosin phosphorylation. Nonmuscle myosin H chain IIA is phosphorylated by protein kinase C (PKC) on Ser(1917). Our aim was to determine the PKC isoform specificity of this phosphorylation event and to evaluate its potential role in regulated secretion. Using an Ab against the phosphorylated form of Ser(1917), we show that this site is not phosphorylated in unstimulated RBL-2H3 mast cells. The physiological stimulus, Ag, or the pharmacological activators, PMA plus A23187, induced Ser(1917) phosphorylation with a time course coincident with the onset of granule mediator secretion. Dephosphorylation at this site occurred as Ag-stimulated secretion declined from its peak, but dephosphorylation was delayed in cells activated with PMA plus A23187. Phosphate incorporation was also enhanced by PMA alone and by inhibition of protein phosphatase 2A. G?6976, an inhibitor of conventional PKC isoforms, abolished secretion and Ser(1917) phosphorylation with similar dose dependencies consistent with involvement of either PKCalpha or PKCbeta. Phorbol ester-stimulated Ser(1917) phosphorylation was reconstituted in HEK-293 cells (which lack endogenous PKCbeta) by overexpression of both wild-type and constitutively active PKCbetaII but not the corresponding PKCbetaI or PKCalpha constructs. A similar selectivity for PKCbetaII overexpression was also observed in MIN6 insulinoma cells infected with recombinant PKC wild-type adenoviruses. Our results implicate PKC-dependent phosphorylation of myosin H chain IIA in the regulation of secretion in mast cells and suggest that Ser(1917) phosphorylation might be a marker of PKCbetaII activation in diverse cell types.  相似文献   

2.
Changes in shape, and aggregation that accompanies platelet activation, are dependent on the assembly and reorganization of the cytoskeleton. To assess the changes in cytoskeleton induced by thrombin and PMA, suspensions of aspirin-treated,32P-prelabeled, washed pig platelets in Hepes buffer containing ADP scavengers were activated with thrombin, and with PMA, an activator of protein kinase C. The cytoskeletal fraction was prepared by adding Triton extraction buffer. The Triton-insoluble (cytoskeletal) fraction isolated by centrifugation was analysed by SDS-PAGE and autoradiography. Incorporation of actin into the Triton-insoluble fraction was used to quantify the formation of F-actin. Thrombin-stimulated platelet cytoskeletal composition was different from PMA-stimulated cytoskeletal composition. Thrombin-stimulated platelets contained not only the three major proteins: actin (43 kDa), myosin (200 kDa) and an actin-binding protein (250 kDa), but three additional proteins of Mr56 kDa, 80 kDa and 85 kDa in the cytoskeleton, which were induced in by thrombin dose-response relationship. In contrast, PMA-stimulated platelets only induced actin assembly, and the 56 kDa, 80 kDa and 85 kDa proteins were not found in the cytoskeletal fraction. Exposure of platelets to thrombin or PMA induced phosphorylation of pleckstrin parallel to actin assembly. Staurosporine, an inhibitor of protein kinase C, inhibited actin assembly and platelet aggregation induced by thrombin or PMA, but did not inhibit the incorporation of 56 kDa, 80 kDa and 85 kDa into the cytoskeletal fraction induced by thrombin. These three extra proteins seem to be unrelated to the induction of protein kinase C. We conclude that actin polymerization and platelet aggregation were induced by a mechanism dependent on protein kinase C, and suggest that thrombin-activated platelets aggregation could involve additional cytoskeletal components (56 kDa, 80 kDa, 85 kDa) of the cytoskeleton, which made stronger actin polymerization and platelet aggregation more.  相似文献   

3.
Protein phosphorylations are rapidly induced in intact B cells by antibodies to surface immunoglobulin (anti-IgM) and by phorbol 12-myristate 13-acetate (PMA). A comparison of the molecular weight, isoelectric points, phosphopeptides, and phosphoamino acids of the phosphoproteins induced by anti-IgM and by PMA suggests that anti-IgM acts through the activation of protein kinase C. This conclusion is strengthened by the observation that prolonged treatment with PMA ablates the ability of anti-IgM to induce phosphorylation, presumably by depleting cellular protein kinase C. Furthermore, the effects of dibutyryl cyclic AMP on protein phosphorylation are quite distinct from the effects of anti-IgM. The six most prominent phosphoproteins induced by PMA, with approximate Mr values of 47, 55, 62, 68, 68, and 65-70 X 10(3), are associated with the plasma membrane. Of these, four are apparently associated with the cytoskeleton, suggesting that the phosphorylation of cytoskeletal proteins may be important events early in B cell activation. Examination of protein phosphorylation in cell lines derived from different tissues has identified one major B cell phosphoprotein (Mr 65-70 X 10(3), which is absent in T cells, and two phosphoproteins (Mr 55 and 68 X 10(3), which are observed in cells of hematopoietic origin but which are absent or uncommon in other cell types.  相似文献   

4.
Three types of agonists; receptor-mediated concanavalin A), direct (phorbol ester), and membrane-perturbing (compound 48/80), elicit histamine secretion from rat peritoneal mast cells. We tested whether activation of the mast cells by these agents is accompanied by subcellular redistribution of protein kinase C. Phorbol ester treatment predictably caused a profound decrease of phospholipid/Ca2+-dependent histone kinase activity in the cytosol and a concomitant increase of [3H]PMA-binding capacity in the membrane fraction, in a time- and concentration-dependent manner. Similar, but less marked effects were observed with stimulations by concanavalin A and compound 48/80. When mast cells labeled with [32P] and then stimulated with the agents, phosphorylation of a 50,000-Dalton protein was enhanced in the membrane fraction. These results suggest that protein kinase C may play a role in mast cell activation through phosphorylation of the membrane protein.  相似文献   

5.
Mouse peritoneal macrophages respond to activators of protein kinase C and to zymosan particles and calcium ionophore by rapid enhancement of a phospholipase A pathway and mobilization of arachidonic acid. The pattern of protein phosphorylation induced in these cells by 4 beta-phorbol 12-myristate 13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol, exogenous phospholipase C and by zymosan and ionophore A23187 was found to be virtually identical. The time course of phosphorylation differed among the phosphoprotein bands and in only some of those identified (i.e., those of 45 and 65 kDa) was the phosphorylation sufficiently rapid to be involved in the activation of the phospholipase A pathway. Phosphorylation of lipocortin I or II could not be detected. Down-regulation of kinase C by a 24-h pretreatment with PMA resulted in extensive inhibition of both protein phosphorylation and the mobilization of arachidonic acid in response to PMA or dioctanoylglycerol. The phosphorylation of the 45 kDa protein in response to zymosan and A23187 was also inhibited by pretreatment with PMA, while only arachidonic acid release induced by zymosan was inhibited by this pretreatment. Depletion of intracellular calcium had little effect on kinase C-dependent phosphorylation, although arachidonic acid mobilization is severely inhibited under these conditions. Bacterial lipopolysaccharide and lipid A induced a phosphorylation pattern different from that induced by PMA, and down-regulation of protein kinase C did not affect lipopolysaccharide-induced protein phosphorylation. The results indicate (i) that protein kinase C plays a critical role also in zymosan-induced activation of the phospholipase A pathway mobilizing arachidonic acid; (ii) that such activation requires calcium at some step distal to kinase C-mediated phosphorylation and (iii) that phosphorylation of lipocortins does not explain the kinase C-dependent activation.  相似文献   

6.
7.
Ly-1, the murine lymphocyte differentiation antigen CD5, is phosphorylated constitutively in vivo. This phosphorylation is enhanced by phorbol 12-myristate 13-acetate (PMA) treatment, but not by concanavalin A, Ca2+ ionophore or dibutyryl cAMP. Prolonged PMA treatment abolished PMA-induced Ly-1 phosphorylation but not constitutive phosphorylation, suggesting that protein kinase C (PKC) is responsible for this enhanced phosphorylation, but not the basal phosphorylation of Ly-1. Ly-1 is phosphorylated by PKC added to membranes, further supporting a role for protein kinase C in the in vivo phosphorylation of Ly-1.  相似文献   

8.
A study was made of the role of protein phosphorylation of mast cells and their cytoskeleton upon secretion induced by biogenic amines (histamine and serotonin) and bradykinin, a possible mediator of the effect of MEA, a sulfur-containing radioprotector. The data obtained indicate that the incorporation of phosphate in some proteins of mast cells is an important stage in the process of exocytosis during radioprophylaxis. Cytoskeletal proteins were shown to be involved in mast cell secretion.  相似文献   

9.
The protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), has been found recently to transform cultured astrocytes from flat, polygonal cells into stellate-shaped, process-bearing cells. Studies were conducted to determine the effect of PMA on protein phosphorylation in astrocytes and to compare this pattern of phosphorylation with that elicited by dibutyryl cyclic AMP (dbcAMP), an activator of the cyclic AMP-dependent protein kinase which also affects astrocyte morphology. Exposure to PMA increased the amount of 32P incorporation into several phosphoproteins, including two cytosolic proteins with molecular weights of 30,000 (pI 5.5 and 5.7), an acidic 80,000 molecular weight protein (pI 4.5) present in both the cytosolic and membrane fractions, and two cytoskeletal proteins with molecular weights of 60,000 (pI 5.3) and 55,000 (pI 5.6), identified as vimentin and glial fibrillary acidic protein, respectively. Effects of PMA on protein phosphorylation were not observed in cells depleted of protein kinase C. In contrast to the effect observed with PMA, treatment with dbcAMP decreased the amount of 32P incorporation into the 80,000 protein. Like PMA, treatment with dbcAMP increased the 32P incorporation into the proteins with molecular weights of 60,000, 55,000 and 30,000, although the magnitude of this effect was different. The effect of dbcAMP on protein phosphorylation was still observed in cells depleted of protein kinase C. The results suggest that PMA, via the activation of protein kinase C, can alter the phosphorylation of a number of proteins in astrocytes, and some of these same phosphoproteins are also phosphorylated by the cyclic AMP-dependent mechanisms.  相似文献   

10.
Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) has been implicated in the regulation of transport processes in a variety of tissues and cell lines. To establish whether protein kinase C participates in the regulation of renal phosphate transport, we examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on phosphate uptake in fresh preparations of mouse renal tubules, and we correlated the changes in transport activity with protein kinase C activation and phosphorylation of endogenous proteins. PMA inhibited Na+-dependent phosphate transport, elicited a rapid translocation of protein kinase C from the cytosolic to the particulate fraction and stimulated the phosphorylation of endogenous substrates in the cytosolic and brush border membrane fractions. Effects of PMA were maximal after a 10 min incubation of the tubules with the activator. 4 alpha-Phorbol, an inert analogue of PMA, did not elicit any of these effects. The present results demonstrate a temporal correlation between inhibition of Na+-dependent phosphate transport, translocation and activation of protein kinase C, and phosphorylation of endogenous proteins in mouse renal tubules. These data suggest that protein kinase C may play a regulatory role in phosphate transport in mammalian kidney.  相似文献   

11.
Regulation of the plasma membrane Ca2+ pump in the cell is of critical importance in maintaining calcium homeostasis. Since protein kinase C is known to regulate functions of cellular proteins by direct phosphorylation or by inducing their gene expression, we investigated the possible involvement of protein kinase C in the regulation of the plasma membrane Ca2+ pump. The Ca2+ pump was isolated by immunoprecipitation from [32P]orthophosphate-labeled cultured rat aortic endothelial cells grown in the absence or presence of phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. PMA treatment of cells led to a rapid increase in the phosphorylation level (1.3-fold) within 5 min and a further increase to 2.9-fold after 3 h. Prolonged PMA treatment also induced the accumulation of the Ca2+ pump mRNA, followed by increased levels of the pump protein. The peak level of the pump mRNA induction occurred at 4 h and was 8-20-fold higher than the control culture without PMA. The rate of the Ca2+ pump protein accumulation was slower, reaching a maximum of 3.5-fold after 6 h. Induction of the pump mRNA was suppressed by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and by down-regulation of protein kinase C. Inactive phorbol ester 4 alpha-phorbol didecanoate also failed to mimic the PMA effect. These results suggest that the induction of Ca2+ pump expression is mediated by a protein kinase C-dependent mechanism. Furthermore, since the induction of the Ca2+ pump mRNA was blocked when cycloheximide and PMA were added together, this suggests that newly synthesized protein factor is needed to produce the mRNA induction. Our results suggest that protein kinase C is involved in the regulation of the Ca2+ pump in endothelial cells. At the protein level, it modifies the Ca2+ pump by phosphorylation, and at the gene level, it stimulates the expression of its mRNA and thereby increases the amount of the pump protein.  相似文献   

12.
The role of serine/threonine protein phosphatases PP1 and PP2A in mast cell secretion was investigated using the phosphatase inhibitors okadaic acid and calyculin A. Calyculin A (5-25 nm) inhibited antigen-induced secretion from a rat mucosal mast cell line (RBL-2H3) when added in conjunction with the activator. Okadaic acid (250-1000 nm) inhibited secretion only when added before activation and did so in a time- and concentration-dependent manner. Both inhibitors caused the cells to become rounder, but only calyculin A induced membrane blebbing and a loss of adherence. Okadaic acid also inhibited secretion induced by the calcium ionophore A23187, in the presence or absence of PMA, indicating that the phosphatase inhibitors act on a component of the secretory pathway downstream of calcium mobilization. Okadaic acid increased the phosphorylation of a number of proteins, as did an analogue methyl okadaate, which also inhibited secretion, but less effectively. Okadaic acid induced the phosphorylation of triton-insoluble proteins of 55, 18 and 16 kDa. The 55 kDa protein was identified as vimentin and okadaic acid induced its partial translocation to the triton-soluble fraction. Our data indicate that full secretory function in mucosal mast cells requires phosphatase activity.  相似文献   

13.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   

14.
Adenosine potentiates preformed mediator release from mouse bone marrow-derived mast cells stimulated with specific Ag or the calcium ionophore A23187. When these mast cells were cultured for 30 to 120 min with the phorbol ester PMA (10(-8) or 10(-7) M), protein kinase C activity was increased and Ag-stimulated beta-hexosaminidase release was modestly inhibited, whereas A23187-stimulated release was synergistically enhanced. However, in both cases, exogenous adenosine failed to augment beta-hexosaminidase release. Overnight PMA exposure produced a decrease in protein kinase C activity and a decrease in both Ag- and A23187-stimulated preformed mediator release, as well as a lack of responsiveness to adenosine. This hyporesponsiveness could be reversed by 24 h after washing the cells free of PMA. The generation of the arachidonic acid metabolite leukotriene C4 was not altered by mast cell PMA exposure. The ability of adenosine to increase intracellular cAMP concentrations was modestly blunted by high doses of PMA, and PMA abrogated the increase in intracellular free calcium levels usually observed in cells stimulated with Ag in the presence of 10(-5) M adenosine. PMA exposure induces a hyporesponsiveness to adenosine in mast cells, either by a direct effect on protein kinase C activity and/or by an effect on adenosine receptor expression or recycling.  相似文献   

15.
Abstract It is well known that facultative intracellular pathogens such as Salmonella suppress the host immune system. In the present study we attempted to clarify the mechanism responsible for the suppression of T-cell proliferation in mice infected with Salmonella typhimurium . The proliferation of murine spleen cells stimulated with a T-cell mitogen such as phytohemagglutinin (PHA) or concanavalin A (ConA) was significantly suppressed when the mice were infected with S. typhimurium , but not with Eschirichia coli . The suppression of T-cell proliferation did not necessarily parallel the level of interleukin-2 (IL-2) secretion, and was not restored by treatment with a calcium ionophore, indomethacin or IL-2. Only phorbol 12-myristate-13 acetate (PMA), an activator of protein kinase C (PKC), caused a slight recovery of cell proliferation with an augmentation of IL-2 secretion. Furthermore, Western blotting using anti-phosphotyrosine antibodies showed that the mitogen-induced tyrosine phosphorylation of 120-, 106-, 94-, 68- and 57-kDa proteins in murine splenic T-cells was inhibited by S. typhimurium infection. Also, the inhibition of tyrosine phosphorylation was not restored by treatment with PMA. These results suggest that the suppression of T-cell proliferation induced by Salmonella infection may be regulated by inhibition of tyrosine phosphorylation in T-cells, although the inhibition is not associated with PKC activation and subsequent IL-2 secretion of T cells.  相似文献   

16.
Activation of protein kinase C in erythrocytes by 4-beta-phorbol 12-myristate 13-acetate (PMA) resulted in a parallel stimulation (time course and dose response) of the phosphorylation of both membrane proteins (heterodimers of 107 kDa and 97 kDa, protein 4.1 and 4.9, respectively) and of phosphatidylinositol 4-phosphate (PIP) and, to a lesser extent, of phosphatidylinositol 4,5-bisphosphate (PIP2). Evidence that the effect on lipid was mediated by protein kinase C activation and not by a direct action of PMA was provided by (1) the lack of effect of a phorbol ester that did not activate protein kinase C or of PMA addition on isolated membranes from control erythrocytes, (2) the reversal of the effect in the presence of protein kinase C inhibitors (alpha-cobrotoxin, H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine) or trifluoperazine). PMA treatment did not change the specific activity of ATP or the content of PIP2, but increased the content of PIP and decreased that of PI, indicating that the phosphorylation or dephosphorylation reactions linking PI and PIP were the target for the action of PMA. PMA treatment had no effect on the Ca2+-dependent PIP/PIP2 phospholipase C activity measured in isolated membranes. Mezerein, another protein kinase activator, had similar effects on both protein and lipid phosphorylation, when added with alpha-cobrotoxin. Activation of protein kinase A by cAMP also produced increases in phosphorylation, although quantitatively different from those induced by protein kinase C, in proteins and PIP. Simultaneous addition of PMA and cAMP at maximal doses resulted in only a partially additive effect on PIP labelling. These results show that inositol lipid turnover can be modulated by a protein kinase C and protein kinase A-dependent process involving the phosphorylation of a common protein. This could be PI kinase or PIP phosphatase or another protein regulating the activity of these enzymes.  相似文献   

17.
T Luo  J R Downing    J V Garcia 《Journal of virology》1997,71(3):2535-2539
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) encodes a 27 to 34 kDa myristoylated protein that induces downregulation of CD4 from the cell surface and enhances virus infectivity. As shown by experiments on SIV-infected adult macaques, Nef is important in pathogenesis and disease progression. In vitro, protein kinase C (PKC) phosphorylates Nef, but the role of phosphorylation in the function and expression of this protein has not yet been determined. Here we show that in HIV type 1-infected cells, phosphorylation of Nef increased 8- to 12-fold after treatment with phorbol myristate acetate and phytohemagglutinin (PMA/PHA). Basal and PMA/PHA-induced phosphorylation occurred on serine residues of Nef and was independent of other HIV proteins. The PMA/PHA-induced phosphorylation of Nef was inhibited by bisindolylmaleimide I, a potent and specific inhibitor of PKC, but was unaffected by H89, an inhibitor of protein kinase A. In contrast, treatment with bisindolylmaleimide I did not affect the basal level of Nef phosphorylation, suggesting two different phosphorylation pathways. A PMA-insensitive CD4 mutant in which three serine residues in the cytoplasmic domain have been replaced by alanines was used to determine whether PMA-induced phosphorylation affects Nef-induced CD4 downregulation. In Nef-expressing cells, treatment with PMA enhanced downregulation of the CD4 serine triple mutant from the cell surface, suggesting that phosphorylation is important for Nef function.  相似文献   

18.
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.  相似文献   

19.
Phorbol ester–induced reorganization of the actin cytoskeleton was investigated in C6 rat glioma cells. Observations by fluorescence microscopy and photoelectron microscopy indicated that pretreatment with the transition metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) for 1–2 h at 50 μM reduced the sensitivity of the actin cytoskeleton to disruption by the subsequent addition of 200 nM phorbol myristate acetate (PMA). The protective effect of TPEN was eliminated by adding back Zn2+ prior to PMA addition, implicating chelation of metal ions as the mechanism of action of TPEN. C6 cells exposed to PMA experience potent activation of protein kinase C (PKC) and substantial redistribution of the kinase from a soluble to a particulate cellular fraction (translocation). TPEN pretreatment did not block PKC translocation in PMA-exposed cells. By two-dimensional gel analysis, TPEN also did not reduce, but rather slightly increased, the PMA-stimulated phosphorylation of the acidic 80 kDa endogenous PKC substrate, as well as two other proteins at 18 kDa and 50 kDa. In contrast, TPEN significantly suppressed phosphorylation of a 20 kDa protein, both in cells treated with TPEN only and in TPEN-pretreated PMA-exposed cells. The results indicate that the ability of TPEN to protect against PKC-mediated actin cytoskeletal disruption is not due to either a block of PKC translocation or to general inhibition of PKC activity. Rather, the action of TPEN is more selective and probably involves chelation of Zn2+ at a critical Zn2+ -dependent phosphorylation step downstream from the initial tumor promoter–-induced effects on PKC. © 1994 Wiley-Liss, Inc.  相似文献   

20.
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号