首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A positive correlation between the activity level of cysteine proteinases in developing eggs of common silkworm moth (Bombyx mori L.), on the one hand, and a set of commercial characteristics, on the other, was found. This allows the determination of cysteine proteinase activities (pH optima of 3.0, 3.6, and 8.6) to be recommended as a biochemical test for an early prediction of potential productivity of silkworm breeds. A positive correlation between the activity level of acid cysteine proteinases in eggs of parental breeds and a set of commercial characteristics of their hybrids was detected, indicating a principal possibility of predicting the degree of heterosis.  相似文献   

2.
A positive correlation between the activity level of cysteine proteinases in developing eggs of common silkworm moth (Bombyx mori L.), on the one hand, and a set of commercial characteristics, on the other, was found. This allows the determination of cysteine proteinase activities (pH optima of 3.0, 3.6, and 8.6) to be recommended as a biochemical test for an early prediction of potential productivity of silkworm breeds. A positive correlation between the activity level of acid cysteine proteinases in eggs of parental breeds and a set of commercial characteristics of their hybrids was detected, indicating the possibility of predicting the degree of heterosis.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 1, 2005, pp. 99–106.Original Russian Text Copyright © 2005 by Krylova, Yarygin, Filippovich.  相似文献   

3.
采用阴离子交换层析法,从棉铃虫Helicoverpa armigera卵母细胞中分离纯化到一种半胱氨酸蛋白酶,SDS-PAGE电泳显示为一条带,分子量约为29 kD,原位水解电泳表明其具有蛋白水解活性。对其进行了部分氨基酸序列测定,初步确定这种蛋白酶属于半胱氨酸蛋白酶类中的组织蛋白酶B类。  相似文献   

4.
  • 1.1. Two proteinases have been identified in yolk granules of Nereis diversicolor mature oocytes, an aminopeptidase and an acid cysteine proteinase.
  • 2.2. The aminopeptidase was identified as a metallo-enzyme having a molecular weight of about 260 kDa.
  • 3.3. Except that the acid cysteine proteinase is a high molecular weight protein (200 kDa) and has a very low pH optimum (3.0), the enzyme possesses properties resembling those of mammalian cathepsin L.
  • 4.4. The cathepsin L-like proteinase was found to be liable to the in vitro proteolysis of the yolk granule proteins and is therefore suggested to be involved in yolk protein processing.
  相似文献   

5.
A cathepsin D-like aspartic proteinase (EC 3.4.23) is abundant in ungerminated barley ( Hordeum vulgare ) seed while a 30 kDa cysteine endoproteinase (EC 3.4.22) is one of the proteinases synthesized de novo in the germinating seed. In this work, the localization of these two acid proteinases was studied at both the tissue and subcellular levels by immunomicroscopy. The results confirm that they have completely different functions. The aspartic proteinase was present in the ungerminated seed and, during germination, it appeared in all the living tissues of the grain, including the shoot and root. Contrary to previous suggestions, it was not observed in the starchy endosperm. By immunoblotting, the high molecular mass form of the enzyme (32 + 16 kDa) was found in all the living tissues, whereas the low molecular mass form (29 + 11 kDa) was not present in the shoot or root, indicating that the two enzyme forms have different physiological roles. The aspartic proteinase was localized first in the scutellar protein bodies of germinating seed, and later in the vacuoles which are formed by fusion of the protein bodies. In contrast to the aspartic proteinase, the expression of the 30 kDa cysteine proteinase began during the first germination day, and it was secreted into the starchy endosperm; first from the scutellum and later from the aleurone layer. It was not found in either shoots or roots. The 30 kDa cysteine proteinase was detected in the Golgi apparatus and in the putative secretory vesicles of the scutellar epithelium. These results suggest that the aspartic proteinase functions only in the living tissues of the grain, as opposed to the 30 kDa cysteine proteinase which is apparently one of the proteases initiating the hydrolysis of storage proteins in the starchy endosperm.  相似文献   

6.
For the first time the pro-form of a recombinant cysteine proteinase has been expressed at a high level in Escherichia coli. This inactive precursor can subsequently be processed to yield active enzyme. Sufficient protein can be produced using this system for X-ray crystallographic structure studies of engineered proteinases. A cDNA clone encoding propapain, a precursor of the papaya proteinase, papain, was expressed in E. coli using a T7 polymerase expression system. Insoluble recombinant protein was solubilized in 6 M guanidine hydrochloride and 10 mM dithiothreitol, at pH 8.6. A protein-glutathione mixed disulphide was formed by dilution into oxidized glutathione and 6 M GuHCl, also at pH 8.6. Final refolding and disulphide bond formation was induced by dilution into 3 mM cysteine at pH 8.6. Renatured propapain was processed to active papain at pH 4.0 in the presence of excess cysteine. Final processing could be inhibited by the specific cysteine proteinase inhibitors E64 and leupeptin, but not by pepstatin, PMSF or EDTA. This indicates that final processing was due to a cysteine proteinase and suggests that an autocatalytic event is required for papain maturation.  相似文献   

7.
Porphyromonas gingivalis, a Gram-negative anaerobic rod, has been closely associated with the initiation and progression of periodontal disease. This organism has been shown to produce a large number of proteolytic enzymes which can degrade a variety of tissue proteins, and these are considered to be major virulence factors. One of the proteinases produced by this organism, referred to as gingipain-1, has been purified to homogeneity from P. gingivalis culture medium by a combination of gel filtration and ion-exchange chromatography. The enzyme was found to have a molecular mass near 50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a pH optimum in the neutral to alkaline range, and a requirement for cysteine for activation and Ca2+ for stabilization. Amino-terminal sequence analysis indicated that gingipain belongs to a new, so far unknown, subfamily of cysteine proteinases. Three unusual features of this proteinase are: (a) the stimulation of amidolytic activity by glycine-containing dipeptides; (b) a narrow specificity which is limited to peptide bonds containing arginine residues; and (c) resistance to inhibition by proteinase inhibitors in human plasma.  相似文献   

8.
A procedure is described for the purification of a previously undetected cysteine proteinase, which we have called papaya proteinase IV, from spray-dried latex of the papaya (Carica papaya) plant. The purification involves affinity chromatography on Gly-Phe-aminoacetonitrile linked to CH-Sepharose 4B, with elution by 2-hydroxyethyl disulphide at pH 4.5. The product thus obtained is a mixture of almost fully active papain and papay proteinase IV, which are then separated by cation-exchange chromatography. A preliminary characterization of papaya proteinase IV showed it to be very similar to chymopapain in both molecular size and charge. However, the new enzyme is immunologically distinct from the previously characterized cysteine proteinases of papaya latex. It also differs in its lack of activity against the synthetic substrates of the other papaya proteinases, in its narrow specificity against protein substrates and its lack of inhibition by chicken cystatin. Papaya proteinase IV is abundant, contributing almost 30% of the protein in spray-dried papaya latex, and contamination of chymopapain preparations with this enzyme may account for some of the previously reported heterogeneity of chymopapain.  相似文献   

9.
Acid-activatable cysteine proteinases of Dictyostelium discoideum were first identified in spore extracts of strain SG1 using gelatin/SDS/PAGE, followed by acid treatments. Here we utilized the technique of acid activation to identify cryptic cysteine proteinases throughout auto-induced and heat-induced spore germination of D. discoideum strain SG2 and SG1. The major acid-activatable cysteine proteinase identified in SG2 and SG1 spore extracts was ddCP38 (D. discoideum cysteine proteinase with a molecular mass of 38 kDa) and ddCP48, respectively. Further investigation of these enzymes revealed that they were also base deactivatable with a treatment of ammonium chloride directly following acid activation. However, the most intriguing observation was the reversibility of the effects of base deactivation on the enzymes following a second treatment with acetic acid. Thus, we hypothesize that, unlike most mammalian cysteine proteinases which generally require the cleavage of a pro-peptide region for activation, these cysteine proteinases of D. discoideum likely undergo reversible conformational changes between latent and active forms. Moreover, we were able to detect these cryptic cysteine proteinases in the vegetative cells and early aggregates of both strains SG1 and SG2. Studies using 4-[(2S, 3S)-3-carboxyoxiran-2-ylcarbonyl-L-leucylamido]buty lguanidine, a cysteine proteinase inhibitor, revealed that acid activation of a portion of these proteinases was still achievable even after incubation with the inhibitor, further supporting the concept of two stable and reversible conformational arrangements of the enzymes. Thus, we speculate that the pH shuffles that modulate proteinase conformation and activity in vitro may be a reflection of the in vivo regulation of these enzymes via H+-ATPases and ammonia.  相似文献   

10.
A novel protease designated protease-A-17N-1, was purified from the halo-alkalophilic Bacillus sp. 17N-1, and found active in media containing dithiothreitol and EDTAK(2). This enzyme maintained significant activity from pH 6.00 to 9.00, showed optimum k(cat)/K(m) value at pH 7.50 and 33 degrees C. It was observed that only specific inhibitors of cysteine proteinases inhibited its activity. The pH-(k(cat)/K(m)) profile of protease-A-17N-1 was described by three pK(a)s in the acid limb, and one in the alkaline limb. Both are more likely due t3o the protonic dissociation of an acidic residue, and the development and subsequent deprotonation of an ion-pair, respectively, in its catalytic site, characteristic for cysteine proteinases. Moreover, both the obtained estimates of rate constant k(1) and the ratio k(2)/k(-1) at 25 degrees C, from the temperature-(k(cat)/K(m)) profile of protease-A-17N-1, were found similar to those estimated from the proton inventories of the same parameter, verifying the reliability of the latter methodology. Besides, the bowed-downward proton inventories of k(cat)/K(m), as well as the large inverse SIE observed for this parameter, in combination with its dependence versus temperature, were showed unambiguously that k(cat)/K(m) = k(1). Such results suggest that the novel enzyme is more likely to be a cysteine proteinase functioning via a general acid-base mechanism.  相似文献   

11.
The major proteinase activity in extracts of larval midguts from the southern corn rootworm (SCR), Diabrotica undecimpunctata howardi, was identified as a cysteine proteinase that prefers substrates containing an arginine residue in the P1 position. Gelatin-zymogram analysis of the midgut proteinases indicated that the artificial diet-fed SCR, corn root-fed SCR, and root-fed western corn rootworms (Diabrotica virgifera virgifera) possess a single major proteinase with an apparent molecular mass of 25kDa and several minor proteinases. Similar proteinase activity pH profiles were exhibited by root-fed and diet-fed rootworms with the optimal activity being slightly acidic. Rootworm larvae reared on corn roots exhibited significantly less caseinolytic activity than those reared on the artificial diet. Midgut proteolytic activity from SCR was most sensitive to inhibition by inhibitors of cysteine proteinases. Furthermore, rootworm proteinase activity was particularly sensitive to inhibition by a commercial protein preparation from potato tubers (PIN-II). One of the proteins, potato cysteine proteinase inhibitor-10', PCPI-10', obtained from PIN-II by ion-exchange chromatography, was the major source of inhibitory activity against rootworm proteinase activity. PCPI-10' and E-64 were of comparable potency as inhibitors of southern corn rootworm proteinase activity (IC(50) =31 and 35nM, respectively) and substantially more effective than chicken egg white cystatin (IC(50) =121nM). Incorporation of PCPI-10' into the diet of SCR larvae in feeding trials resulted in a significant increase in mortality and growth inhibition. We suggest that expression of inhibitors such as PCPI-10' by transgenic corn plants in the field is a potentially attractive method of host plant resistance to these Diabrotica species.  相似文献   

12.
Insulin-degrading, Ca2+-activated, neutral proteinases of molecular weight about 150 kDa and 70 kDa were purified from plasma membranes of the loach liver and embryo cells. It was shown that dithiothreitol and cysteine enhanced the enzyme activity, whereas p-chloromercuribenzoate and iodoacetic acid inhibited its level. Incubation of isolated plasma membranes with 5'[gamma 32P]ATP resulted in phosphorylation of these proteinases. The intensity of the process increased under the influence of insulin (100 microU/ml), that correlated with a decrease in the activity of proteinase with molecular weight of 150 kDa and an increase in 70 kDa enzyme activity. The data suggest the existence of common regulatory pathways of insulin degradation in plasma membranes of the loach liver and embryo cells.  相似文献   

13.
Breakdown of gliadin during germination of xHaynaldoticum sardoum Meletti et Onnis seeds is correlated with the appearance in the endosperms of a proteinase activity, which is absent in the quiescent seed. This activity is optimal at pH 4 and has a maximum stability at pH 4–5. Gel filtration of proteinase activity extracted from quiescent seeds indicates a molecular weight of 60–100 kDa. The proteinase can hydrolyze hemoglobin but not gliadin and is inhibited by pepstatin A and, to a lower extent, by p -chloromercuribenzoic acid (p-CMB). Gel filtrations of crude extracts from germinating seeds reveal two peaks (molecular weight 66 and 21 kDa) of activity against hemoglobin and a shoulder and a peak (molecular weight 21 kDa) of activity on gliadin. The first peak of activity against hemoglobin is inhibited by pepstatin A and p-CMB; the second one is inhibited by p-CMB and leupeptin. As for the gliadin-eluted activity the shoulder is mainly inhibited by pepstatin A and p-CMB, whereas the peak is inhibited by p-CMB and leupeptin. Estimations of the ratios of total nitrogen to α-amino nitrogen, suggest that the enzyme preparations mainly contain proteinases. It is concluded that the proteinases present in the quiescent seeds of xH. sardoum , in particular aspartic proteinases (EC 3.4.23), could play a role as initiator endoproteases or participate in the digestion of modified proteins during the mobilization of reserve proteins. The cysteine proteinases (EC 3.4.22) appearing during the germination seem to account for the hydrolysis of the most abundant class of protein reserves, the prolamins.  相似文献   

14.
The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe-Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 degrees C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15-Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects.  相似文献   

15.
Haemocytes play an essential role in defending invertebrates against pathogens and parasites that enter their haemocoel. In the present study, the cockroach, Periplaneta americana was able to encapsulate Hymenolepis diminuta eggs within 24 h after injection. Proteolytic activity of egg capsules was determined by gelatin zymography. A gelatinase-type proteolytic enzyme with molecular weight about 65 kDa was present at the time of capsule formation. Enzyme activity was obviously inhibited by leupeptin but not by ethylenediamine tetraacetic acid (EDTA) or 1,10-phenanthroline or phenylmethanesulfonyl fluoride (PMSF). Hence, we tentatively characterized this enzyme as a cysteine proteinase. The specificity of the cellular immune response in vivo and the increased cysteine proteinase activity coincided with the capsule size and encapsulation process. The possible function of this cysteine proteinase activity during encapsulation of the H. diminuta eggs by P. americana is discussed.  相似文献   

16.
Adult Fasciola hepatica secrete a cysteine proteinase capable of cleaving host IgG close to the papain cleaving site. The proteinase was separated by size permeation chromatography. Gelatinsubstrate polyacrylamide gel electrophoresis analysis revealed that the proteinase migrates as 6 proteolytic bands in the apparent molecular size range 60–90 kDa. Based on pH profiles of activity, inhibition studies using diethylpyrocarbonate and the diazomethylketone Z-phe-ala-CHN2, and characterising the substrate specificity of the enzymes using fluorogenic peptide substrates we have shown that the 60–90-kDa proteinases are cathepsin L-Iike proteinases.  相似文献   

17.
Larvae of Baris coerulescens Scop. (Coleoptera: Curculionidæ) exhibit a complex array of gut proteinase activities comprising cysteine and serine proteinases. The major cysteine proteinase activity, showing an optimum at pH 6.0, corresponds to at least 4 different proteinases. On the contrary, the minor serine proteinase activity, with an optimum at pH 9.0, seems to be due essentially to a single proteinase. The cysteine proteinase inhibitor oryzacystatin I (OC-I) inhibits completely the cysteine proteinase activity in vitro. However, larval growth and survival were not significantly different on control and transgenic oilseed rape plants expressing high levels of active OC-I. In larvae grown on transgenic plants, cysteine proteinase activity was dramatically decreased, whereas serine proteinase activity was increased by more than 2-fold, when compared to larvae raised on control plants. For both activities, no new proteinase was detected in insects fed plants expressing OC-I. These results suggest that partial compensation of the inhibition of cysteine proteinase activity by the increase in serine proteinase activity allowed the larvae to overcome the effects of OC-I consumption. This case illustrates problems that could arise when trying to achieve high levels of protection for plants against Coleopteran pests possessing a complex digestive proteinase pool.  相似文献   

18.
In order to reduce the protein content of wastewater, photosynthetic bacteria producing proteinases were screened from wastewater of various sources and stocked in culture. An isolated strain, KDDS1, was identified as Rubrivivax gelatinosus, a purple nonsulfur bacterium that secretes proteinase under micro-aerobic conditions under light at 35 degrees C. Molecular weight of the purified enzyme was estimated to be 32.5 kDa. The enzyme showed the highest activity at 45 degrees C and pH 9.6, and the activity was completely inhibited by phenylmethyl sulfonyl fluoride (PMSF), but not by EDTA. The amino-terminal 24 amino acid sequence of the enzyme showed about 50% identity to those of serine proteinases from Pseudoalteromonas piscicida strain O-7 and Burkholderia pseudomallei. Thus, the enzyme from Rvi. gelatinosus KDDS1 was thought to be a serine-type proteinase. This was the first serine proteinase characterized from photosynthetic bacteria.  相似文献   

19.
The cultural filtrates of S. thermovulgaris contain a proteinase which is active towards the chromogenic subtilisin substrate, Z-Ala-Ala-Leu-pNa, and azocasein. Pure enzyme preparations were obtained by affinity chromatography on bacitracin-Sepharose with subsequent rechromatography on the same adsorbent. The proteinase was completely inactivated by PMSF and DFP, the specific inhibitors for serine proteinase, by thiol reagents (HgCl2, PCMB) and by the protein inhibitor from S. jantinus. The pH activity optimum for the enzyme is 7.8-8.2, temperature optimum is 55 degrees C. The enzyme is stable at pH 6-9, has a pI of 5.0 and a molecular mass of 32 kDa. When tested against the peptide substrate, the enzyme shows a specificity characteristic for subtilisins. The N-terminal sequence of the enzyme, Tyr-Thr-Pro-Asn-Asp-Pro-Tyr-Phe-Ser-Ser-Arg-Gln-Tyr-Gly, shows a 100% homology with that of terminase, a thiol-dependent serine proteinase. On the basis of the above considerations the enzyme may be related to the subfamily of thiol-dependent serine proteinases.  相似文献   

20.
Pechan  Tibor  Jiang  Binghua  Steckler  David  Ye  Lijun  Lin  Lei  Luthe  Dawn S.  Williams  W. Paul 《Plant molecular biology》1999,40(1):111-119
In previous work, a 33 kDa cysteine proteinase was found in callus initiated from maize (Zea mays L.) resistant to fall armyworm feeding. A callus cDNA library from the maize inbred Mp708 was screened with oligonucleotides derived from the N-terminal amino acid sequence of the 33 kDa proteinase and several cDNA clones were isolated and sequenced. A cDNA clone encoding the 33 kDa cysteine proteinase, mir1, was identified. Two additional clones, mir2 and mir3, encoding putative cysteine proteinases were also identified. mir2 and mir3 are distinct from mir1 and each other, but show a high degree of homology. All of the mir cDNA clones map to distinct sites on the maize genome. Amino acid sequences encoded by the mir clones are similar to other known cysteine proteinases and are most closely related to the oryzain- and - precursors. The ERFNIN motif and a 12 amino acid conserved sequence are present in the propeptide region of the putative proteinases encoded by mir clones. mir2 and mir3 appear to have C-terminal extensions. The phylogenetic tree of nucleotide sequences of mir1, mir2, mir3 and other representative cysteine proteinases from protozoa, plants and animals was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号