首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Abstract We studied the effects of the ornithine decarboxylase inhibitors (2R,5R)-6-heptyne-2,5-diamine (R,R,-MAP) and α-difluoromethylornithine (DFMO) on cell proliferation and polyamine metabolism in 9L rat brain tumour cells. Treatment with 5 μM R,R-MAP inhibited cell proliferation to the same extent as did treatment with 1 mM DFMO. Both inhibitors depleted putrescine and spermidine concentrations to less than detectable levels within 24 h and 48 h of drug treatment, respectively; spermine levels were not affected significantly by either inhibitor. The effects of DFMO on 9L cell cycle kinetics were similar to those of R,R-MAP. During the first 3 days of treatment, both drugs caused an accumulation of cells in G1 and a reduction of cells in S phase, as compared with control cells with a slowing in the rate of cell cycle traverse. In cultures seeded at low (1 × 105), medium (5 × 105), or high (2 × 106) cell densities in a 25 cm2 flask, inhibition of cell proliferation and polyamine depletion by both R,R-MAP and DFMO was more pronounced at the lower densities relative to the density-matched control cells. Thus, R,R-MAP was a more potent inhibitor of ornithine decarboxylase than was DFMO in 9L cells, and the inhibitory effects of both compounds on cell proliferation and polyamine biosynthesis were greater in actively proliferating cells.  相似文献   

2.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

3.
The role of polyamines in myoblast proliferation was studied by treating cells of Yaffe's L6 line of rat myoblasts with inhibitors of polyamine synthesis. Both an irreversible inhibitor of ornithine decarboxylase--difluoromethyl-ornithine (DFMO)--and a competitive inhibitor of S-adenosyl-methionine decarboxylase--methylglyoxal-bis(guanylhydrazone) (MGBG)--depressed spermidine levels and inhibited myoblast proliferation. Spermine levels were not significantly depressed by either inhibitor and putrescine levels were decreased only by DFMO. Putrescine and spermidine, but not magnesium, prevented inhibition of myoblast proliferation by DFMO and MGBG; determination of 14C-DFMO uptake in the presence and absence of these compounds demonstrated that they did not reduce the rate or extent of inhibitor uptake and thus prevent its inhibition of ornithine decarboxylase. Thus it seems likely that these inhibitors reduce cell proliferation by inhibiting polyamine formation. Addition of spermidine to the cells led to a substantial reduction in the activity of S-adenosyl-methionine-decarboxylase, suggesting that the enzyme is subject to negative regulation by the products of the polyamine biosynthetic pathway. Unexpectedly, addition of spermidine also increased intracellular putrescine levels; this apparently resulted from conversion of spermidine to putrescine. Addition of putrescine or spermidine in the absence of serum did not increase the rate of myoblast proliferation although it did elevate intracellular polyamine levels as expected. We conclude that some threshold level of one or more polyamines (probably spermidine) is necessary but not sufficient for initiation and maintenance of myoblast proliferation in culture.  相似文献   

4.
Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1–10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100–200 μM) and the NO synthase inhibitor l-NAME (100 μM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.  相似文献   

5.
Influence of DL-alpha-difluoromethylornithine (DFMO) treatment on the growth kinetics, labelling index, extra- and intracellular polyamine and nucleotide concentrations was monitored in cultured P388 leukemia cells. A substantial decrease of cell proliferation was observed when the cells were continuously treated with 1-5 mM DFMO. Depletion of cellular polyamines, mostly of putrescine and spermidine, was seen with a concomitant but delayed increase of spermidine and spermine levels in the culture medium. Changes of DNA content and of labelling index of untreated and treated cells seem to indicate that DFMO arrested cells in G1/S transition. The results presented here provide additional in vitro evidence on the characteristic changes in the metabolic imbalance of ornithine in tumor cells induced by DFMO via inhibition of ornithine decarboxylase and ornithine carbamoyl transferase activities.  相似文献   

6.
d,l-α-Difluoromethylornithine (DFMO), an irreversible inactivator of ornithine decarboxylase, inhibited 9L monolayer culture rat brain tumor cell proliferation at concentrations as low as 1 mM DFMO to about 25% of control growth when cells were seeded at an initial density of 5 × 105/flask. DFMO reduced intracellular putrescine content to <5% of control by 8 h and spermidine content to <5 % of control by 48 h post-treatment. Cytostasis caused by 10 or 25 mM DFMO could both be reversed and blocked by addition of exogenous putrescine. Cells pretreated for 48 h with DFMO and then replated in its absence could not enter exponential growth until polyamine production resumed. Addition of exogenous putrescine at the time of replating allowed pretreated cells to resume exponential growth at the same time as controls. Flow cytometry revealed that the fraction of cells in G1 increased until polyamine accumulation resumed, implying the presence of a G1-S block. Within 6 h of replating, there was a decrease in the fraction of control cells in G1. These observations support the hypothesis that entry of 9L cells into S phase depends on an adequate intracellular pool of polyamines.  相似文献   

7.
The growth and survival of mouse (MC-26) colon carcinoma in vitro and in vivo are significantly reduced by inhibitors of polyamine biosynthesis. alpha-Difluoromethylornithine (DFMO), is a specific and irreversible inhibitor of ornithine decarboxylase (ODC); the rate-limiting enzyme in polyamine biosynthesis. DFMO treatment inhibits the growth of MC-26 colon cancer cells and decreases MC-26 cell survival both in vitro and in vivo. In the present study, we examined the effects of cyclosporine (CsA) on growth, survival, and polyamine levels in MC-26 colon cancer in vitro. CsA had inhibitory effects on MC-26 colon cancer growth which were similar to DFMO; these effects were blocked by the addition of the polyamine, putrescine. The combination of CsA (8.3 X 10(-4) mM) and DFMO (0.5 mM or 1.0 mM) inhibited MC-26 cell survival to a greater extent than either agent alone. These results suggest that CsA given in combination with other agents which inhibit polyamine synthesis may be useful for the treatment of colon cancer.  相似文献   

8.
Incubation of 9L rat brain tumor cells with 25 mM DL-α-difluoromethylornithine inhibits cell proliferation, while treatment with 10 mM and 1 mM do not. All three concentrations cause equal degrees of depletion of intracellular putrescine and spermidine content, but have no effect on spermine content. These observations show that 9L cells can continue to proliferate in spite of significant polyamine depletion and leads one to question the role of polyamines in 9L cell replication. These observations also suggest that inhibition of 9L cell proliferation by 25 mM DL-α-difluormethylornithine is probably not due to its effect on ornithine decarboxylase or on intracellular polyamine content.  相似文献   

9.
Treatment of mouse lymphoma S49 cells with D,L-alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, depleted cellular polyamine levels and stopped cell growth. The cells were arrested predominantly in G1. Thus, polyamine depletion may lead to a regulatory growth arrest in S49 cells. We tested two hypotheses regarding the relationship of growth arrest mediated by polyamine limitation to that mediated by cyclic AMP (cAMP). The hypothesis that cAMP-induced arrest results from polyamine depletion is not tenable, because the arrest could not be reversed by addition of exogenous polyamines, and because cellular polyamine levels do not drop in dibuturyl cyclic AMP (Bt2cAMP)-arrested cells. The hypothesis that polyamine-mediated growth arrest is effected via modulation of cAMP levels or cAMP-dependent protein kinase activity was also shown to be incorrect, because a S49 variant deficient in cAMP-dependent protein kinase was arrested by DFMO. The activities of the polyamine-synthesizing enzymes ornithine decarboxylase (ODC) and S-adenosyl methionine decarboxylase (SAMD) are both reduced in Bt2cAMP-treated cells to about 10% of that in control populations, as shown previously. DFMO diminishes ODC activity and augments SAMD activity in both untreated and Bt2cAMP-treated cells, leading to polyamine depletion in both cases.  相似文献   

10.
The present studies were undertaken to determine the importance of the polyamine biosynthetic pathway in cellular proliferation and hormone-regulated progesterone receptor synthesis in estrogen receptor-containing breast cancer cells. Treatment of MCF-7 cells with difluoromethylornithine (DFMO), the irreversible inhibitor of the enzyme ornithine decarboxylase (ODC), prevented estradiol-induced cell proliferation in a dose-dependent fashion. DFMO inhibition of estradiol-induced cell proliferation was completely recoverable by the addition of exogenous putrescine while putrescine alone did not stimulate proliferation of control cells. ODC activity was 4-fold greater in estrogen-treated cells and DFMO (5 mM) fully inhibited ODC activity. DFMO was able to suppress only slightly further the proliferation of antiestrogen (tamoxifen) treated cells and putrescine was able to recover this DFMO inhibition. In contrast to the suppressive effect of DFMO on cell proliferation, DFMO had no effect on the ability of estrogen to stimulate increased (4-fold elevated) levels of progesterone receptor. Hence, while ODC activity appears important for estrogen-induced cell proliferation, inhibition of the activity of this enzyme has no effect on the ability of estradiol to increase cellular progesterone receptor content.  相似文献   

11.
The human salivary gland (HSG) epithelial cell line can differentiate when cultured on extracellular matrix preparations. We previously identified >30 genes upregulated by adhesion of HSG cells to extracellular matrix. In the current studies, we examined the role of one of these genes, the polyamine pathway biosynthetic enzyme S-adenosylmethionine decarboxylase (SAM-DC) and the related enzyme, ornithine decarboxylase (ODC), on HSG cell differentiation during culture on extracellular matrix. HSG cells cultured on fibronectin-, collagen I gel-, and Matrigel-coated substrates for 12-24 h upregulated SAM-DC and ODC mRNA expression and enzyme activity compared to cells cultured on non-precoated substrates. After 3-5 days, HSG cells grown on Matrigel- or collagen I gel-coated substrates acquired a differentiated phenotype: the cells showed changes in culture morphology and increased expression of salivary gland differentiation markers (vimentin, SN-cystatin, and alpha-amylase). Further, culturing the cells on substrates precoated with an anti-beta1-integrin-antibody promoted differentiation-like changes. HSG cells cultured on collagen I- or Matrigel-coated substrates rapidly entered the cell cycle but showed decreased cell proliferation at longer times. In contrast, cell proliferation was enhanced on fibronectin-coated substrates compared to cells on non-precoated substrates. Treatment with the polyamine synthesis inhibitors, difluoromethylornithine (DFMO), and methylglyoxal bis-(guanylhydrazone) (MGBG), inhibited cell proliferation and delayed (3)H-thymidine incorporation in HSG cells cultured on all of the substrates. Further, inclusion of DFMO and MGBG inhibited or delayed acquisition of the differentiated phenotype in HSG cells cultured on Matrigel- or collagen I gel-coated substrates. This suggests that the adhesion-dependent expression of SAM-DC and ODC contributes to extracellular matrix-dependent HSG cell differentiation.  相似文献   

12.
Difluoromethylornithine (DFMO), a selective inhibitor of ornithine decarboxylase, was used to probe the possible role of polyamines in the regulation of proliferation and steroidogenic activities of bovine adrenocortical cells in primary culture. The presence of DFMO in the culture medium not only suppressed the polyamine increase observed in proliferating control cells but resulted in a rapid depletion of the putrescine and spermidine cellular content, while spermine remained at a basal level. The proliferation of DFMO-treated cells was rapidly blocked and resumed at a normal rate upon addition of putrescine to the medium. DFMO-treated cells showed an impaired steroidogenic response to ACTH while adenylate cyclase stimulation was not altered. Thus, while ornithine decarboxylase and polyamines may be required for adrenocortical cell replication, deprivation of these compounds did not facilitate the expression of differentiated cell functions, as observed with granulosa cells.  相似文献   

13.
Variant S49 mouse lymphoma cells with increased ornithine decarboxylase activity were obtained by selecting for resistance to alpha-difluoromethylornithine (DFMO), a specific inhibitor of the enzyme. Ornithine decarboxylase was identified as a specifically immunoprecipitable polypeptide that was made at an increased rate in the variant cells. Ornithine decarboxylase was also identified on a two-dimensional gel as a metabolically labeled polypeptide of Mr approximately 55,000 which was synthesized at an increased rate in two independently selected variants. Synthesis of this polypeptide was further augmented by treatment of cells with inhibitors of ornithine decarboxylase activity. The charge of the polypeptide was altered by treatment of either cells or cellular extracts with DFMO, a suicide substrate which binds covalently to the enzyme. This charge alteration and the inactivation of ornithine decarboxylase showed the same dependence on DFMO concentration and both effects were prevented by addition of either ornithine or putrescine. Pulse-chase experiments showed that the half-life of the ornithine decarboxylase polypeptide in these variant cells was 45 min. We conclude that ornithine decarboxylase is made at an increased rate in the resistant variants and that the polypeptide turns over rapidly.  相似文献   

14.
The object of this study was to examine the effect of inhibition of polyamine biosynthesis on the cell cycle traverse of HeLa cells using α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ornithine decarboxylase. The results of this study indicate that DFMO inhibits HeLa cell growth by causing a decrease in the intracellular levels of putrescine and spermidine without any significant effect on concentration of spermine. The inhibition is readily reversible by exogenous supply of putrescine to the medium. The DFMO treatment also results in an accumulation of cells in S phase. Further, the use of an S phase-specific drug like Ara-C following DFMO treatment results in a synergistic killing of the tumor cells as revealed by the inhibition of cell growth. These observations suggest that exploitation of regulation of the cell cycle by the depletion of polyamines with the use of inhibitors like DFMO might help in designing better therapeutic regimes in combination with other cytotoxic drugs.  相似文献   

15.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

16.
Four mouse and two human tumour cell lines resistant to alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), were analysed for the activities of polyamine-biosynthetic and -biodegradative enzymes as well as for cellular polyamine contents. In all but one of these cell lines the resistance to DFMO was based on an overproduction of ODC. In a human myeloma cell line the resistance was based on a greatly enhanced arginase activity. Except for one L1210 variant cell line, all the resistant cell lines contained elevated S-adenosylmethionine decarboxylase activity. Similarly, all the resistant mouse, but not human, cell lines displayed enhanced spermidine and spermine synthase activities. Arginase activity was detected only in human cell lines. In both DFMO-resistant cell lines the activity of arginase was strikingly elevated. Of the biodegradative enzymes, polyamine oxidase activity was readily detectable in all mouse cells, but no measurable activity was found in the human cells. Spermidine/spermine N1-acetyltransferase activity was elevated in three out of four resistant mouse cell lines. Even though the concentration of spermidine was usually lower in the overproducer cells, this was compensated by an increased content of spermine. The two resistant human myeloma cells contained intracellular ornithine concentrations that were from more than 5 to more than 20 times higher than those in the parental cells.  相似文献   

17.
The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by α-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.  相似文献   

18.
The polyamines spermidine and spermine and their precursorputrescine are intimately involved in and are required for cell growthand proliferation. This study examines the mechanism by whichpolyamines modulate cell growth, cell cycle progression, and signaltransduction cascades. IEC-6 cells were grown in the presence orabsence ofDL--difluoromethylornithine(DFMO), a specific inhibitor of ornithine decarboxylase, which is thefirst rate-limiting enzyme for polyamine synthesis. Depletion ofpolyamines inhibited growth and arrested cells in theG1 phase of the cell cycle. Cellcycle arrest was accompanied by an increase in the level of p53 proteinand other cell cycle inhibitors, including p21Waf1/Cip1 andp27Kip1. Induction of cell cycleinhibitors and p53 did not induce apoptosis in IEC-6 cells, unlike manyother cell lines. Although polyamine depletion decreased the expressionof extracellular signal-regulated kinase (ERK)-2 protein, a sustainedincrease in ERK-2 isoform activity was observed. The ERK-1 proteinlevel did not change, but ERK-1 activity was increased inpolyamine-depleted cells. In addition, polyamine depletion induced thestress-activated proteinkinase/c-JunNH2-terminal kinase (JNK) type ofmitogen-activated protein kinase (MAPK). Activation of JNK-1 was theearliest event; within 5 h after DFMO treatment, JNK activity wasincreased by 150%. The above results indicate that polyamine depletioncauses cell cycle arrest and upregulates cell cycle inhibitors andsuggest that MAPK and JNK may be involved in the regulation of theactivity of these molecules.  相似文献   

19.
20.
In an attempt to better establish the relationship between polyamine levels and the differentiation of embryonal carcinoma cells, we have examined the ability of alpha-difluoromethylornithine (DFMO), a known inducer of differentiation in one embryonal carcinoma cell line, to stimulate the differentiation of embryonal carcinoma cells from a variety of cell lines. Differentiation was monitored using a variety of criteria including morphological alterations and changes in biochemical and antigenic parameters. Depending on their response to difluoromethylornithine, three classes of cell lines could be identified, those which 1) differentiate extensively, 2) differentiate poorly, and 3) fail to differentiate. Three different classes of embryonal carcinoma cell lines reflect differential changes in polyamine levels resulting from inhibition of ornithine decarboxylase enzyme activity by DFMO. The specific cell lines which exhibit large decreases in both ornithine decarboxylase activity and polyamine levels also show extensive differentiation. The cell lines which show only moderate decreases in enzyme activity and polyamines differentiate poorly while the cell lines which fail to respond to DFMO in that polyamines do not drop below the threshold level necessary to induce differentiation fail to differentiate. These studies suggest that decreases in intracellular polyamines induce EC cell differentiation in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号