首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
alpha-Crystallin, a heteromultimeric protein made up of alphaA- and alphaB-crystallins, functions as a molecular chaperone in preventing the aggregation of proteins. We have shown earlier that structural perturbation of alpha-crystallin can enhance its chaperone-like activity severalfold. The two subunits of alpha-crystallin have extensive sequence homology and individually display chaperone-like activity. We have investigated the chaperone-like activity of alphaA- and alphaB-crystallin homoaggregates against thermal and nonthermal modes of aggregation. We find that, against a nonthermal mode of aggregation, alphaB-crystallin shows significant protective ability even at subphysiological temperatures, at which alphaA-crystallin or heteromultimeric alpha-crystallin exhibit very little chaperone-like activity. Interestingly, differences in the protective ability of these homoaggregates against the thermal aggregation of beta(L)-crystallin is negligible. To investigate this differential behavior, we have monitored the temperature-dependent structural changes in both the proteins using fluorescence and circular dichroism spectroscopy. Intrinsic tryptophan fluorescence quench-ing by acrylamide shows that the tryptophans in alphaB-crystallin are more accessible than the lone tryptophan in alphaA-crystallin even at 25 degrees C. Protein-bound 8-anilinonaphthalene-1-sulfonate fluorescence demonstrates the higher solvent accessibility of hydrophobic surfaces on alphaB-crystallin. Circular dichroism studies show some tertiary structural changes in alphaA-crystallin above 50 degrees C. alphaB-crystallin, on the other hand, shows significant alteration of tertiary structure by 45 degrees C. Our study demonstrates that despite a high degree of sequence homology and their generally accepted structural similarity, alphaB-crystallin is much more sensitive to temperature-dependent structural perturbation than alphaA- or alpha-crystallin and shows differences in its chaperone-like properties. These differences appear to be relevant to temperature-dependent enhancement of chaperone-like activity of alpha-crystallin and indicate different roles for the two proteins both in alpha-crystallin heteroaggregate and as separate proteins under stress conditions.  相似文献   

2.
Abscisic acid stress ripening 1 (ASR1) is a low molecular weight plant-specific protein encoded by an abiotic stress-regulated gene. Overexpression of ASR1 in transgenic plants increases their salt tolerance. The ASR1 protein possesses a zinc-dependent DNA-binding activity. The DNA-binding site was mapped to the central part of the polypeptide using truncated forms of the protein. Two additional zinc-binding sites were shown to be localized at the amino terminus of the polypeptide. ASR1 protein is presumed to be an intrinsically unstructured protein using a number of prediction algorithms. The degree of order of ASR1 was determined experimentally using nontagged recombinant protein expressed in Escherichia coli and purified to homogeneity. Purified ASR1 was shown to be unfolded using dynamic light scattering, gel filtration, microcalorimetry, circular dichroism, and Fourier transform infrared spectrometry. The protein was shown to be monomeric by analytical ultracentrifugation. Addition of zinc ions resulted in a global change in ASR1 structure from monomer to homodimer. Upon binding of zinc ions, the protein becomes ordered as shown by Fourier transform infrared spectrometry and microcalorimetry, concomitant with dimerization. Tomato (Solanum lycopersicum) leaf soluble ASR1 is unstructured in the absence of added zinc and gains structure upon binding of the metal ion. The effect of zinc binding on ASR1 folding and dimerization is discussed.  相似文献   

3.
4.
alphaA and alphaB crystallins, members of the small heat shock protein family, prevent aggregation of proteins by their chaperone-like activity. These two proteins, although very homologous, particularly in the C-terminal region, which contains the highly conserved "alpha-crystallin domain," show differences in their protective ability toward aggregation-prone target proteins. In order to investigate the differences between alphaA and alphaB crystallins, we engineered two chimeric proteins, alphaANBC and alphaBNAC, by swapping the N-terminal domains of alphaA and alphaB crystallins. The chimeras were cloned and expressed in Escherichia coli. The purified recombinant wild-type and chimeric proteins were characterized by fluorescence and circular dichroism spectroscopy and gel permeation chromatography to study the changes in secondary, tertiary, and quaternary structure. Circular dichroism studies show structural changes in the chimeric proteins. alphaBNAC binds more 8-anilinonaphthalene-1-sulfonic acid than the alphaANBC and the wild-type proteins, indicating increased accessible hydrophobic regions. The oligomeric state of alphaANBC is comparable to wild-type alphaB homoaggregate. However, there is a large increase in the oligomer size of the alphaBNAC chimera. Interestingly, swapping domains results in complete loss of chaperone-like activity of alphaANBC, whereas alphaBNAC shows severalfold increase in its protective ability. Our findings show the importance of the N- and C-terminal domains of alphaA and alphaB crystallins in subunit oligomerization and chaperone-like activity. Domain swapping results in an engineered protein with significantly enhanced chaperone-like activity.  相似文献   

5.
The chaperone-like protein α-crystallin is a ~35 subunit hetero-oligomer consisting of αA and αB subunits in a 3:1 molar ratio and has the function of maintaining eye lens transparency. We studied the thermal denaturation of α-crystallin by differential scanning calorimetry (DSC), circular dichroism (CD), and dynamic light scattering (DLS) as a function of pH. Our results show that between pH 7 and 10 the protein undergoes a reversible thermal transition. However, the thermodynamic parameters obtained by DSC are inconsistent with the complete denaturation of an oligomeric protein of the size of α-crystallin. Accordingly, the CD data suggest the presence of extensive residual secondary structure above the transition temperature. Within the pH range from 4 to 7 the increased aggregation propensity around the isoelectric point (pI ~ 6) precludes observation of a thermal transition. As pH decreases below 4 the protein undergoes a substantial unfolding. The secondary structure content of the acid-denatured state shows little sensitivity to heating. We propose that the thermal transition above pH 7 and the acid-induced transition at ambient temperature result in predominant denaturation of the αB subunit. Although the extent of denaturation of the αA subunit cannot be estimated from the current data, the existence of a native-like conformation is suggested by the preserved association of the subunits and the chaperone-like activity. A key difference between the thermal and the acid denaturation is that the latter is accompanied by dissociation of αB subunits from the remaining αA-oligomer, as supported by DLS studies.  相似文献   

6.
Elongation factor G(EF-G) and initiation factor 2 (IF2) are involved in the translocation of ribosomes on mRNA and in the binding of initiator tRNA to the 30 S ribosomal subunit, respectively. Here we report that the Escherichia coli EF-G and IF2 interact with unfolded and denatured proteins, as do molecular chaperones that are involved in protein folding and protein renaturation after stress. EF-G and IF2 promote the functional folding of citrate synthase and alpha-glucosidase after urea denaturation. They prevent the aggregation of citrate synthase under heat shock conditions, and they form stable complexes with unfolded proteins such as reduced carboxymethyl alpha-lactalbumin. Furthermore, the EF-G and IF2-dependent renaturations of citrate synthase are stimulated by GTP, and the GTPase activity of EF-G and IF2 is stimulated by the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. The concentrations at which these chaperone-like functions occur are lower than the cellular concentrations of EF-G and IF2. These results suggest that EF-G and IF2, in addition to their role in translation, might be implicated in protein folding and protection from stress.  相似文献   

7.
Molecular chaperone-like activity for protein refolding was investigated using nanogels of self-assembly of cholesterol-bearing pullulan. Nanogels effectively prevented protein aggregation (i.e. carbonic anhydrase and citrate synthase) during protein refolding from GdmCl denaturation. Enzyme activity recovered in high yields upon dissociation of the gel structure in which the proteins were trapped, by the addition of cyclodextrins. The nanogels assisted protein refolding in a manner similar to the mechanism of molecular chaperones, namely by catching and releasing proteins. The nanogels acted as a host for the trapping of refolded intermediate proteins. Cyclodextrin is an effector molecule that controls the binding ability of these host nanogels to proteins. The present nanogel system was also effective at the renaturation of inclusion body of a recombinant protein of the serine protease family.  相似文献   

8.
Small heat shock proteins (sHsps) were found to exhibit efficient chaperone-like activities under stress conditions although their native structures are severely disturbed. Here, using an alternative approach (site-directed mutagenesis), we obtained two structurally and functionally distinct Mycobacterium tuberculosis Hsp16.3 single-site mutant proteins. The G59W mutant protein (with Gly59 substituted by Trp) is capable of exhibiting efficient chaperone-like activity even under non-stress conditions although its secondary, tertiary, and quaternary structures are very different from that of the wild type protein. By contrast, the G59A mutant protein (with Gly59 substituted by Ala) resembles with the wild type protein in structure and function. These observations suggest that the Gly59 of the Hsp16.3 protein is critical for its folding and assembly. In particular, we propose that the exhibition of chaperone-like activity for Hsp16.3 does not require its intact (native) structures but requires the disturbance of its native structures (i.e., the native structure-disturbed Hsp16.3 retains its chaperone-like activity or even becomes more active). In addition, the behavior of such an active mutant protein (G59W) also strongly supports our previous suggestion that Hsp16.3 exhibits chaperone-like activity via oligomeric dissociation.  相似文献   

9.
Reddy GB  Kumar PA  Kumar MS 《IUBMB life》2006,58(11):632-641
alpha-Crystallin, a prominent member of small heat shock protein (sHsp) family and a major structural protein of the eye lens is a large polydisperse oligomer of two isoforms, alphaA- and alphaB-crystallins. Numerous studies have demonstrated that alpha-crystallin functions like a molecular chaperone in preventing the aggregation of various proteins under a wide range of stress conditions. The molecular chaperone function of alpha-crystallin is thus considered to be vital in the maintenance of lens transparency and in cataract prevention. alpha-Crystallin selectively interacts with non-native proteins thereby preventing them from aggregation and helps maintain them in a folding competent state. It has been proposed and generally accepted that alpha-crystallin suppresses the aggregation of other proteins through the interaction between hydrophobic patches on its surface and exposed hydrophobic sites of partially unfolded substrate protein. However, a quantifiable relationship between hydrophobicity and chaperone-like activity remains a matter to be concerned about. On an attentive review of studies on alpha-crystallin chaperone-like activity, particularly the studies that have direct or indirect implications to hydrophobicity and chaperone-like activity, we found several instances wherein the correlation between hydrophobicity and its chaperone-like activity is paradoxical. We thus attempted to provide an overview on the role of hydrophobicity in chaperone-like activity of alpha-crystallin, the kind of evaluation done for the first time.  相似文献   

10.
Dai JR  Liu B  Feng DR  Liu HY  He YM  Qi KB  Wang HB  Wang JF 《Plant cell reports》2011,30(7):1219-1230
Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect l-lactate dehydrogenase (l-LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.  相似文献   

11.
Small heat shock proteins (sHSPs) represent an abundant and ubiquitous family of molecular chaperones that are believed to prevent irreversible aggregation of other cellular proteins under stress conditions. One of the most prominent features of sHSPs is that they exist as homo-oligomers. Examples of both monodisperse and polydisperse oligomers are found within this family. The small heat shock inclusion-body binding protein B (IbpB) of Escherichia coli, originally discovered as a component of inclusion bodies, exhibits a pronounced polydispersity in its oligomeric state. This research was performed to elucidate the temperature effect on the oligomeric state and chaperone-like activity of the polydisperse IbpB oligomers, as well as the structural basis for such a temperature effect. The data presented here demonstrate that the large oligomers of IbpB progressively dissociate into smaller ones at increasing heat-shock temperatures, accompanied by a notable enhancement of chaperone-like activities. The secondary structure, enriched mainly by beta-strands, is slightly changed with such temperature increases. The dimeric building blocks, which seem to be highly stable, act as the functional unit of IbpB. Limited proteolysis was used to identify the susceptible sites in IbpB that may compose the subunit interfaces, which indicated that the 11 residues at both the N and the C terminus are highly flexible and the removal of each will lead to the formation of dimers, as well as the disappearance of chaperone-like activities. Truncation of 11 residues from either end, using recombinant DNA technology, also led to the formation of dimeric mutant IbpB proteins lacking chaperone-like activities. Taken together, the flexible termini appear to be essential for small heat shock protein IbpB to generate various temperature-responsive oligomers, which exhibit various levels of chaperone-like activities, by interlinking or separating the dimer building blocks.  相似文献   

12.
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.  相似文献   

13.
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.  相似文献   

14.
Crystallins are the major soluble lens proteins, and α-crystallin, the most important protective protein of the eye lens, has two subunits (αA and αB) with chaperone activity. αB-crystallin (αB-Cry) with a relatively wide tissue distribution has an innate ability to interact effectively with the misfolded proteins, preventing their aggregation. Melatonin and serotonin have also been identified in relatively high concentrations in the lenticular tissues. This study investigated the effect of these naturally occurring compounds and medications on the structure, oligomerization, aggregation, and chaperone-like activity of human αB-Cry. Various spectroscopic methods, dynamic light scattering (DLS), differential scanning calorimetry (DSC), and molecular docking have been used for this purpose. Based on our results, melatonin indicates an inhibitory effect on the aggregation of human αB-Cry without altering its chaperone-like activity. However, serotonin decreases αB-Cry oligomeric size distribution by creating hydrogen bonds, decreases its chaperone-like activity, and at high concentrations increases protein aggregation.  相似文献   

15.
Phosphorylation appears to be one of the modulators of chaperone functions of small heat shock proteins. However, the role of phosphorylation is not completely understood. We have investigated the structural and functional consequences of a phosphorylation-mimicking mutation in αB-crystallin, a small heat shock protein with chaperone activity. We have used a phosphorylation-mimicking mutant, 3DαB-crystallin, in which all the three phosphorylatable serine residues are replaced with aspartic acid. 3DαB-Crystallin showed enhanced chaperone-like activity towards DTT-induced aggregation of insulin, heat-induced aggregation of citrate synthase and SDS-induced amyloid fibril formation of α-synuclein. Fluorescence and circular dichroism spectroscopic studies showed that 3DαB-crystallin exhibits lower stability towards urea-induced denaturation compared to αB-crystallin. Subunit exchange studies using fluorescence resonance energy transfer showed that 3DαB-crystallin exhibits an observable increase in subunit exchange compared to αB-crystallin. Since only part of αB-crystallin is phosphorylated in vivo, our subunit exchange studies indicate that formation of mixed oligomers between the unphosphorylated and phosphorylated subunits are likely to play a role in vivo. Our study shows that mixed-oligomer formation modulates the chaperone-like activity. We propose that the degree of phosphorylation of the αB-crystallin oligomers and temperature are key modulators to achieve a wide range of chaperone capabilities of the small heat shock protein, αB-crystallin.  相似文献   

16.
Despite the enormous number of studies demonstrating changes in the chaperone-like activity of α-crystallins in vitro, little is known about how these changes influence life-long lens transparency in vivo. Using the γB-crystallin I4F mutant protein as a target for αA-crystallins, we examined how cataract phenotypes are modulated by interactions between α-crystallins with altered chaperone-like activities and γB-I4F proteins in vivo. Double heterozygous α-crystallin knock-out αA(+/-) αB(+/-) mice with a decreased amount of α-crystallins were used to simulate reduced total α-crystallin chaperone-like activity in vivo. We found that triple heterozygous αA(+/-) αB(+/-) γB(I4F/+) mice developed more severe whole cataracts than heterozygous γB(I4F/+) mice. Thus, total chaperone-like activity of α-crystallins is important for maintaining lens transparency. We further tested whether mutant αA-crystallin Y118D proteins with increased chaperone-like activity influenced the whole cataract caused by the γB-I4F mutation. Unexpectedly, compound αA(Y118D/+) γB(I4F/+) mutant lenses displayed severe nuclear cataracts, whereas the lens cortex remained unaffected. Thus, the synergistic effect of αA-Y118D and γB-I4F mutant proteins is detrimental to the transparency only in the lens core. α-Crystallins with different chaperone-like activities are likely required in the lens cortex and nucleus for maintaining transparency.  相似文献   

17.
The Drosophila melanogaster family of small heat shock proteins (sHsps) is composed of 4 main members (Hsp22, Hsp23, Hsp26, and Hsp27) that display distinct intracellular localization and specific developmental patterns of expression in the absence of stress. In an attempt to determine their function, we have examined whether these 4 proteins have chaperone-like activity using various chaperone assays. Heat-induced aggregation of citrate synthase was decreased from 100 to 17 arbitrary units in the presence of Hsp22 and Hsp27 at a 1:1 molar ratio of sHsp to citrate synthase. A 5 M excess of Hsp23 and Hsp26 was required to obtain the same efficiency with either citrate synthase or luciferase as substrate. In an in vitro refolding assay with reticulocyte lysate, more than 50% of luciferase activity was recovered when heat denaturation was performed in the presence of Hsp22, 40% with Hsp27, and 30% with Hsp23 or Hsp26. These differences in luciferase reactivation efficiency seemed related to the ability of sHsps to bind their substrate at 42 degrees C, as revealed by sedimentation analysis of sHsp and luciferase on sucrose gradients. Therefore, the 4 main sHsps of Drosophila share the ability to prevent heat-induced protein aggregation and are able to maintain proteins in a refoldable state, although with different efficiencies. The functional reasons for their distinctive cell-specific pattern of expression could reflect the existence of defined substrates for each sHsp within the different intracellular compartments.  相似文献   

18.
Casein micelles are a major component of milk proteins. It is well known that casein micelles show chaperone-like activity such as inhibition of protein aggregation and stabilization of proteins. In this study, it was revealed that casein micelles also possess a high refolding activity for denatured proteins. A buffer containing caseins exhibited higher refolding activity for denatured bovine carbonic anhydrase than buffers including other proteins. In particular, a buffer containing α-casein showed about a twofold higher refolding activity compared with absence of α-casein. Casein properties of surface hydrophobicity, a flexible structure and assembly formation are thought to contribute to this high refolding activity. Our results indicate that casein micelles stabilize milk proteins by both chaperone-like activity and refolding properties.  相似文献   

19.
Various lines of evidence have shown that ALDH3A1 (aldehyde dehydrogenase 3A1) plays a critical and multifaceted role in protecting the cornea from UV-induced oxidative stress. ALDH3A1 is a corneal crystallin, which is defined as a protein recruited into the cornea for structural purposes without losing its primary function (i.e. metabolism). Although the primary role of ALDH3A1 in the metabolism of toxic aldehydes has been clearly demonstrated, including the detoxification of aldehydes produced during UV-induced lipid peroxidation, the structural role of ALDH3A1 in the cornea remains elusive. We therefore examined the potential contribution of ALDH3A1 in maintaining the optical integrity of the cornea by suppressing the aggregation and/or inactivation of other proteins through chaperone-like activity and other protective mechanisms. We found that ALDH3A1 underwent a structural transition near physiological temperatures to form a partially unfolded conformation that is suggestive of chaperone activity. Although this structural transition alone did not correlate with any protection, ALDH3A1 substantially reduced the inactivation of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal and malondialdehyde when co-incubated with NADP(+), reinforcing the importance of the metabolic function of this corneal enzyme in the detoxification of toxic aldehydes. A large excess of ALDH3A1 also protected glucose-6-phosphate dehydrogenase from inactivation because of direct exposure to UVB light, which suggests that ALDH3A1 may shield other proteins from damaging UV rays. Collectively, these data demonstrate that ALDH3A1 can reduce protein inactivation and/or aggregation not only by detoxification of reactive aldehydes but also by directly absorbing UV energy. This study provides for the first time mechanistic evidence supporting the structural role of the corneal crystallin ALDH3A1 as a UV-absorbing constituent of the cornea.  相似文献   

20.
Mutational analysis and the enzymatic digestion of many chaperones indicate the importance of both hydrophobic and hydrophilic residues for their unique property. Thus, the chaperone activity of alpha-crystallin is lost due to the substitution of hydrophobic residues or upon enzymatic digestion of the negatively charged residues. Tubulin, an eukaryotic cytoskeletal protein, exhibits chaperone-like activity as demonstrated by prevention of DTT-induced aggregation of insulin, thermal aggregation of alcohol dehydrogenase, betagamma-crystallin, and other proteins. We have shown that the tubulin lost its chaperone-like activity upon digestion of its negatively charged C-termini. In this article, the role of the C-terminus of individual subunits has been investigated. We observe that the digestion of C-terminus of beta-subunit with subtilisin causes loss of chaperone-like activity of tubulin. The contribution of C-terminus of alpha-subunit is difficult to establish directly as subtilisin cleaves C-terminus of beta-subunit first. This has been ascertained indirectly using a 14-residue peptide P2 having the sequence corresponding to a conserved region of MHC class I molecules and that binds tightly to the C-terminus of alpha-subunit. We have shown that the binding of P2 peptide to alphabeta-tubulin causes complete loss of its chaperone-like activity. NMR and gel-electrophoresis studies indicate that the P2 peptide has a significant higher binding affinity for the C-terminus of alpha-subunit compared to that of beta-subunit. Thus, we conclude that both the C-termini are necessary for the chaperone-like activity of tubulin. Implications for the chaperone functions in vivo have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号