首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重组大肠杆菌的分批补料培养方法   总被引:4,自引:0,他引:4  
在重组大肠杆菌的培养过程中,存在着菌体的高浓度与外源蛋白的高表达这一矛盾,使得重组菌的比生长速率通常远远低于宿主菌,限制了基因工程菌由实验室规模向工业化规模的转变。要实现重组大肠杆菌的高密度培养,最常用和最有效的方法就是分批补料流加培养。  相似文献   

2.
一种高效、稳定的分泌型原核表达载体的构建及应用   总被引:2,自引:0,他引:2  
以本室构建的原核表达载体pTO-T7为基础载体,PCR合成ompT引导序列,插入该载体多克隆位点上游,构建了分泌型原核表达载体pTO—OT。将2个外源基因克隆至pTO—OT,2个重组质粒在大肠杆菌中均得以高效表达,表达量为25%~30%。Western印迹分析证实了重组蛋白在大肠杆菌中表达后可被信号肽酶有效识别,切割后的重组蛋白具有良好的免疫学活性。对重组表达菌株的连续传代实验证实了该表达载体具有良好的遗传稳定性,显示了该原核表达载体在基因工程中的应用价值。  相似文献   

3.
The selection of a genetic reporter can be difficult because of the wide range of genes available. In order to reduce the selection, we compared the performance of different reporter genes: firefly luciferase (Photinus pyralis lucFF), bacterial luciferase operon (Photorhabdus luminescens luxCDABE), green fluorescent protein (Aequorea victoria gfp), and red fluorescent protein (Discosoma sp. dsred) in whole-cell bacterial sensors. Escherichia coli sensor bacteria were engineered to contain a reporter plasmid that carries the reporter gene under the control of mercury- (mer from Tn21) or arsenite- (ars from R773) responsive regulatory units. Characteristics of the strains were studied by using different arsenite or mercury concentrations and incubation times. The lowest detectable concentration of analytes and the fastest responses were achieved with lucFF or luxCDABE as reporter genes. The fluorescent proteins, GFP and DsRed, gave responses at higher analyte concentrations and after significantly longer incubation times. The results indicate that luciferases are better reporters in whole-cell sensor bacteria.  相似文献   

4.
A multifunctional masquerade-like protein has been isolated, purified, and characterized from hemocytes of the freshwater crayfish, Pacifastacus leniusculus. It was isolated by its Escherichia coli binding property, and it binds to formaldehyde-treated Gram-negative bacteria as well as to yeast, Saccharomyces cerevisiae, whereas it does not bind to formaldehyde-fixed Gram-positive bacteria. The intact masquerade (mas)-like protein is present in crayfish hemocytes as a heterodimer composed of two subunits with molecular masses of 134 and 129 kDa. Under reducing conditions the molecular masses of the intact proteins are not changed. After binding to bacteria or yeast cell walls, the mas-like protein is processed by a proteolytic enzyme. The 134 kDa of the processed protein yields four subunits of 65, 47, 33, and 29 kDa, and the 129-kDa protein results in four subunits of 63, 47, 33, and 29 kDa in 10% SDS-PAGE under reducing conditions. The 33-kDa protein could be purified by immunoaffinity chromatography using an Ab to the C-terminal part of the mas-like protein. This subunit of the mas-like protein has cell adhesion activity, whereas the two intact proteins, 134 and 129 kDa, have binding activity to LPSs, glucans, Gram-negative bacteria, and yeast. E. coli coated with the mas-like protein were more rapidly cleared in crayfish than only E. coli, suggesting this protein is an opsonin. Therefore, the cell adhesion and opsonic activities of the mas-like protein suggest that it plays a role as an innate immune protein.  相似文献   

5.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

6.
Previous work established that the htrB gene of Escherichia coli is required for growth in rich media at temperatures above 32.5 degrees C but not at lower temperatures. In an effort to determine the functional role of the htrB gene product, we have isolated a multicopy suppressor of htrB, called msbB. The msbB gene has been mapped to 40.5 min on the E. coli genetic map, in a 12- to 15-kb gap of the genomic library made by Kohara et al. (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987). Mapping data show that the order of genes in the region is eda-edd-zwf-pykA-msbB. The msbB gene codes for a protein of 37,410 Da whose amino acid sequence is similar to that of HtrB and, like HtrB, the protein is very basic in nature. The similarity of the HtrB and MsbB proteins could indicate that they play functionally similar roles. Mutational analysis of msbB shows that the gene is not essential for E. coli growth; however, the htrB msbB double mutant exhibits a unique morphological phenotype at 30 degrees C not seen with either of the single mutants. Analysis of both msbB and htrB mutants shows that these bacteria are resistant to four times more deoxycholate than wild-type bacteria but not to other hydrophobic substances. The addition of quaternary ammonium compounds rescues the temperature-sensitive phenotype of htrB bacteria, and this rescue is abolished by the simultaneous addition of Mg2+ or Ca2+. These results suggest that MsbB and HtrB play an important role in outer membrane structure and/or function.  相似文献   

7.
8.
The termination of protein synthesis in bacteria requires two codon-specific release factors, RF-1 and RF-2. A gene for a third factor, RF-3, that stimulates the RF-1 and RF-2 activities has been isolated from the gram-negative bacteria Escherichia coli and Dichelobacter nodosus. In this work, we isolated the RF-3 gene from Salmonella typhimurium and compared the three encoded RF-3 proteins by immunoblotting and intergeneric complementation and suppression. A murine polyclonal antibody against E. coli RF-3 reacted with both S. typhimurium and D. nodosus RF-3 proteins. The heterologous RF-3 genes complemented a null RF-3 mutation of E. coli regardless of having different sequence identities at the protein level. Additionally, multicopy expression of either of these RF-3 genes suppressed temperature-sensitive RF-2 mutations of E. coli and S. typhimurium by restoring adequate peptide chain release. These findings strongly suggest that the RF-3 proteins of these gram-negative bacteria share common structural and functional domains necessary for RF-3 activity and support the notion that RF-3 interacts functionally and/or physically with RF-2 during translation termination.  相似文献   

9.
The outer membranes of several strains of Escherichia coli, other enteric bacteria, and a variety of nonenteric gram-negative bacteria all contain a major heat-modifiable protein similar to the OmpA protein of E. coli K-12. The heat-modifiable proteins from these bacteria resemble the K-12 protein in molecular weight, in preferential release from the outer membrane by sodium dodecyl sulfate in the presence of Mg2+, and in characteristic cleavage by proteases to yield a smaller fragment which remains membrane bound. Antiserum directed against the K-12 protein precipitated the heat-modifiable protein from all strains of Enterobacteriaceae, and chemical comparison by isoelectric focusing, cyanogen bromide cleavage profiles, and proteolytic peptide analysis indicated that the proteins from the various enteric bacteria were nearly identical in primary structure. The heat-modifiable proteins from bacteria phylogenically distant from E. coli shared many of the properties of the E. coli protein but were chemically distinct. Thus, it appears that the structure (and, presumably, the function) of the heat-modifiable protein of gram-negative bacteria is strongly conserved during evolution.  相似文献   

10.
An integrated, stacked microlaboratory for performing automated electric-field-driven immunoassays and DNA hybridization assays was developed. The stacked microlaboratory was fabricated by orderly laminating several different functional layers (all 76 x 76 mm(2)) including a patterned polyimide layer with a flip-chip bonded CMOS chip, a pressure sensitive acrylic adhesive (PSA) layer with a fluidic cutout, an optically transparent polymethyl methacrylate (PMMA) film, a PSA layer with a via, a patterned polyimide layer with a flip-chip bonded silicon chip, a PSA layer with a fluidic cutout, and a glass cover plate layer. Versatility of the stacked microlaboratory was demonstrated by various automated assays. Escherichia coli bacteria and Alexa-labeled protein toxin staphylococcal enterotoxin B (SEB) were detected by electric-field-driven immunoassays on a single chip with a specific-to-nonspecific signal ratios of 4.2:1 and 3.0:1, respectively. Furthermore, by integrating the microlaboratory with a module for strand displacement amplification (SDA), the identification of the Shiga-like toxin gene (SLT1) from E. coli was accomplished within 2.5 h starting from a dielectrophoretic concentration of intact E. coli bacteria and finishing with an electric-field-driven DNA hybridization assay, detected by fluorescently labeled DNA reporter probes. The integrated microlaboratory can be potentially used in a wide range of applications including detection of bacteria and biowarfare agents, and genetic identification.  相似文献   

11.
肿瘤坏死因子相关的凋亡诱导配体 (TRAIL)能选择性诱导肿瘤细胞凋亡 .为利用基因工程技术获得重组TRAIL蛋白可溶性片段 (sTRAIL) ,设计 1对引物 .利用PCR技术特异性扩增出sTRAIL的cDNA ,克隆于质粒pGEM 3Zf( )的EcoRⅠ和PstⅠ位点 .经测序证明序列正确后克隆于表达质粒pBV2 2 0的EcoRⅠ和PstⅠ位点 ,转化大肠杆菌DH5α .转化菌株经温度诱导 ,SDS PAGE检测和Western印迹鉴定 ,获得重组sTRAIL的高水平非融合表达菌株 .表达量占菌体总蛋白的 2 0 % .对其表达产物进行了初步纯化 ,SDS PAGE结果显示纯度可达 90 %以上 .用L92 9细胞测定其生物学活性表明 ,重组蛋白在体外能明显诱导肿瘤细胞凋亡  相似文献   

12.
13.
In Escherichia coli the histidine kinase sensor protein, EnvZ, undergoes autophosphorylation and subsequently phosphorylates the regulatory protein, OmpR. Modulation of the levels of OmpR-phosphate controls the differential expression of ompF and ompC . While the phosphotransfer reaction between EnvZ and OmpR has been extensively studied, the domains involved in the sensing function of EnvZ are not well understood. We have used a comparative approach to study the sensing function of EnvZ. During our search of numerous bacteria we found that the symbiotic/pathogenic bacterium Xenorhabdus nematophilus contained the operon encoding both ompR and envZ . Nucleotide sequence analysis revealed that EnvZ of X. nematophilus (EnvZX.n.) is composed of 342 amino acid residues, which is 108 residues shorter than EnvZ of E. coli (EnvZE.c.). Amino acid sequence comparison showed that the cytoplasmic domains of the EnvZ moleculsshared 57% sequence identity. In contrast, the large hydrophilic periplasmic domain of EnvZE.c. was absent in EnvZX.n., and was replaced by a shorter hydrophobic region. Although the periplasmic domains had diverged extensively, envZX.n. was able to complement a Δ envZ strain of E. coli . OmpF and OmpC were differentially produced in response to changes in medium osmolarity in this strain. Further genetic analysis established that heterologous phosphorylation between EnvZX.n. and OmpR of E. coli (OmpRE.c.) accounted for the complementation of the Δ envZ strain. In addition we show that the OmpR molecules of X. nematophilus and E. coli share 78% amino acid sequence identity. These results indicate that the EnvZ protein of X. nematophilus was able to sense changes in the osmolarity of the growth environment and properly regulate the levels of OmpR-phosphate in E. coli .  相似文献   

14.
In Escherichia coli, a relatively low frequency of recombination exchanges (FRE) is predetermined by the activity of RecA protein, as modulated by a complex regulatory program involving both autoregulation and other factors. The RecA protein of Pseudomonas aeruginosa (RecA(Pa)) exhibits a more robust recombinase activity than its E. coli counterpart (RecA(Ec)). Low-level expression of RecA(Pa) in E. coli cells results in hyperrecombination (an increase of FRE) even in the presence of RecA(Ec). This genetic effect is supported by the biochemical finding that the RecA(Pa) protein is more efficient in filament formation than RecA K72R, a mutant protein with RecA(Ec)-like DNA-binding ability. Expression of RecA(Pa) also partially suppresses the effects of recF, recO, and recR mutations. In concordance with the latter, RecA(Pa) filaments initiate recombination equally from both the 5' and 3' ends. Besides, these filaments exhibit more resistance to disassembly from the 5' ends that makes the ends potentially appropriate for initiation of strand exchange. These comparative genetic and biochemical characteristics reveal that multiple levels are used by bacteria for a programmed regulation of their recombination activities.  相似文献   

15.
The ability of some bacteria to dissolve poorly soluble calcium phosphates (CaPs) has been termed 'mineral phosphate solubilizing' (MPS). Since most microorganisms and plants must assimilate P via membrane transport, biotransformation of CaP into soluble phosphate is considered an essential component of the global P cycle. In many Gram-negative bacteria, strong organic acids produced in the periplasm via the direct oxidation pathway have been shown to dissolve CaP in the adjacent environment. Therefore, the quinoprotein glucose dehydrogenase (PQQGDH) may function in the ecophysiology of many soil bacteria. There is interest in using MPS bacteria for industrial bioprocessing of rock phosphate ore (a substituted fluroapatite) or even for direct inoculation of soils as a 'biofertilizer' analogous to nitrogen fixation. Our laboratory has spent 20 years studying superior MPS bacteria. Screening genomic libraries in the appropriate E. coli genetic background can 'trap' PQQ or GDH genes from these bacteria via functional complementation. In setting the 'trap' for PQQ genes, we have identified DNA fragments that apparently induce PQQGDH activity in E. coli with no sequence homology to known PQQ genes. These data suggest that E. coli may have an alternative, inducible PQQ biosynthesis pathway. Finally, a novel protein engineering strategy to increase the catalytic rate of PQQGDH has emerged and will be discussed.  相似文献   

16.
Ribosome-inactivating proteins (RIPs) are toxic proteins synthesized by many plants and some bacteria, that specifically depurinate the 28S RNA and thus interrupt protein translation. RIPs hold broad interest because of their potential use as plant defense factors against pathogens. However, study of the activity of type I RIPs has been hampered since their expression in Escherichia coli has typically been toxic to the model system. Mirabilis expansa, an Andean root crop, produces a type I RIP called ME1 in large quantities in its storage roots. In this study, the cDNA sequence of ME1 was used to successfully express the recombinant ME1 protein in E. coli. The production of recombinant ME1 in E. coli was confirmed by Western blot analysis using anti-ME1 antibodies. The studies with fluorescence-labeled ME1 showed that ME1 can enter bacteria and be distributed in the cytoplasm uniformly, indicating its ability to access the protein synthesis machinery of the bacteria. The recombinant enzyme was active and depurinated yeast ribosomes. However, both native and recombinant ME1 proteins failed to depurinate the E. coli ribosomes, explaining the non-toxicity of recombinant ME1 to E. coli. Structural modeling of ME1 showed that it has folding patterns similar to other RIPs, indicating that ME1 and PAP, which share a similar folding pattern, can show different substrate specificity towards E. coli ribosomes. The results presented here are very significant, as few reports are available in the area of bacterial interaction with type I RIPs.  相似文献   

17.
During cell division in Gram-negative bacteria, the cell envelope invaginates and constricts at the septum, eventually severing the cell into two compartments, and separating the replicated genetic materials. In Escherichia coli, at least nine essential gene products participate directly in septum formation: FtsA, FtsI, FtsL, FtsK, FtsN, FtsQ, FtsW, FtsZ and ZipA. All nine proteins have been localized to the septal ring, an equatorial ring structure at the division site. We used translational fusions to green fluorescent protein (GFP) to demonstrate that FtsQ, FtsL and FtsI localize to potential division sites in filamentous cells depleted of FtsN, but not in those depleted of FtsK. We also constructed translational fusions of FtsZ, FtsA, FtsQ, FtsL and FtsI to enhanced cyan or yellow fluorescent protein (ECFP or EYFP respectively), GFP variants with different fluorescence spectra. Examination of cells expressing different combinations of the fusions indicated that FtsA, FtsQ, FtsL and FtsI co-localize with FtsZ in filaments depleted of FtsN. These localization results support the model that E. coli cell division proteins assemble sequentially as a multimeric complex at the division site: first FtsZ, then FtsA and ZipA independently of each other, followed successively by FtsK, FtsQ, FtsL, FtsW, FtsI and FtsN.  相似文献   

18.
19.
The effect of sarcotoxin IIA, an antibacterial protein of Sarcophaga peregrina (flesh fly), on Escherichia coli was investigated. Sarcotoxin IIA was found to have a bacterial effect on growing bacteria, but little on non-growing bacteria. At a concentration of 25 micrograms/ml, it induced significant morphological change of growing E. coli cells. In its presence, growing cells became greatly elongated, and spheroplast-like bulges and projections appeared on their surface. A rough mutant strain of E. coli with a defect in the structure of lipopolysaccharide was more sensitive than the parent strain to sarcotoxin IIA. These results suggest that the main effect of sarcotoxin IIA is to inhibit cell wall synthesis, including septum formation.  相似文献   

20.
In enteric bacteria, proteins of the Hha/YmoA family play a role in the regulation of gene expression in response to environmental factors. Interaction of both Hha and YmoA with H-NS has been reported, and an Hha/H-NS complex has been shown to modulate expression in Escherichia coli of the haemolysin operon of plasmid pHly152. In addition to the hns gene, the chromosome of E. coli and other enteric bacteria also includes the stpA gene that encodes the StpA protein, an H-NS paralogue. We report here the identification of the Hha paralogue in E. coli, the YdgT protein. As Hha paralogue, YdgT appears to fulfil some of the functions reported for StpA as H-NS paralogue: YdgT is overexpressed in hha mutants and can compensate, at least partially, some of the hha-induced phenotypes. We also demonstrate that YdgT interacts both with H-NS and with StpA. Protein cross-linking studies showed that YdgT/H-NS heteromeric complexes are generated within the bacterial cell. The StpA protein, which is subjected to Lon-mediated turnover, was less stable in the absence of Hha or YdgT. Our findings suggest that Hha, YdgT and StpA may form complexes in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号