首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

2.
Luminol-mediated chemiluminescence in neutrophils is stimulated by Sendai virus and by influenza virus; Lettré cells also exhibit chemiluminescence (less than 10% of that of neutrophils), which is stimulated by Sendai virus and by influenza virus. Virally induced permeability changes are not responsible for chemiluminescence, since (i) extracellular Ca2+ inhibits permeability changes but stimulates chemiluminescence, and (ii) influenza virus, which induces permeability changes at pH 5.3 but not at pH 7.4, induces chemiluminescence at either pH. Other agents [zymosan, N-formyl-L-methionyl-L-leucyl-L-phenylalanine, 4-phorbol 12-myristate 13-acetate (phorbol ester), A23187] likewise induce chemiluminescence in the absence of permeability changes.  相似文献   

3.
Exposure of perfused rat livers to zymosan, arachidonic acid and phenylephrine, but not to latex particles, induces pronounced oxygen uptake, glycogenolysis and Ca2+ mobilization. The oxygen uptake induced by arachidonic acid and by zymosan remains elevated even after the agents have been removed. NaN3 was found to be much more effective in inhibiting the oxygen uptake induced by phenylephrine than that induced by zymosan or arachidonic acid. Glucose release induced by zymosan and by arachidonic acid reaches a maximum after about 2 min and then declines very rapidly even while the agents are still being infused. In contrast, glucose release induced by phenylephrine remains elevated for the duration of the infusion. Ca2+ fluxes induced by arachidonic acid are similar to those induced by phenylephrine in that efflux occurs when the agent is administered and influx occurs only when the agent is removed. This contrasts to the Ca2+ flux changes induced by zymosan where both Ca2+ efflux and Ca2+ influx occur even while zymosan is still being infused. Glucose release induced by zymosan is inhibited by bromophenacylbromide and nordihydroguaiaretic acid, but not by indomethacin. Indomethacin, however inhibits the arachidonic-acid-induced glucose release which is also inhibited by nordihydroguaiaretic acid but not by bromophenacylbromide. Indomethacin inhibits also the arachidonic-acid-induced Ca2+ flux changes whereas the zymosan- and the phenylephrine-induced Ca2+ flux changes are not inhibited by the cyclooxygenase inhibitor. The data presented in this paper suggest that in the perfused rat liver the zymosan-induced glycogenolysis, as well as the Ca2+ flux changes and glycogenolysis induced by arachidonic acid, are mediated by eicosanoids.  相似文献   

4.
The role of Ca2+ in the activation of the enzyme lyso-(platelet-activating factor): acetyl-CoA acetyltransferase was studied in rat peritoneal macrophages in response to complement-coated zymosan particles and ionophore A23187. By using Ca2+-containing buffers, a threshold concentration of extracellular Ca2+ above 1 microM was found to be necessary to observe the activation of the enzyme in response to zymosan. By contrast, a significant role of intracellular Ca2+ in this process could be ruled out, since the putative intracellular calcium-transport antagonist TMB-8 [8-(NN-diethylamino)octyl-3,4,5-trimethoxybenzoate] did not inhibit the activation of the acetyltransferase induced by zymosan in the presence of extracellular Ca+. The link between acetyltransferase activation and extracellular Ca2+ transport was studied by measuring Ca2+ uptake in response to the stimuli. Zymosan particles induced a rapid increment in cell-associated Ca2+ which correlated well with the extent of acetyltransferase activation (r = 0.91) and with the release of platelet-activating factor (r = 0.95) in response to different doses of zymosan. Cellular Ca2+ efflux in response to zymosan particles was also measured and found to be increased, as compared with controls, when the activation of the acetyltransferase declined. In short, the data suggest that the entry of extracellular Ca2+ into the cell is a crucial event in the activation of acetyltransferase and, thereby, in the formation of platelet-activating factor in rat peritoneal macrophages.  相似文献   

5.
The effects of differently opsonized zymosan particles, acting solely at Fc-gamma or at complement receptors or at both, on the level of intracellular calcium ([Ca2+]i) in human neutrophils were studied. A biphasic, long-lasting increase in [Ca2+]i was seen in response to IgG-, C3- and fresh serum-opsonized zymosan particles in the presence of extracellular Ca2+. Unopsonized zymosan, acting mainly at CR3 failed to elevate [Ca2+]i. Addition of 1.4 mM EGTA reduced but did not abolish the rise in [Ca2+]i triggered by opsonized zymosan, indicating that Ca2+ is released from intracellular stores. EGTA changed also the kinetic patterns of Ca(2+)-responses possibly by indirectly affecting the extrusion of Ca2+ in neutrophils.  相似文献   

6.
The aim of the present study was to investigate the actions of zymosan on glucose release and fatty acid oxidation in perfused rat livers and to determine if Kupffer cells and Ca2+ ions are implicated in these actions. Zymosan caused stimulation of glycogenolysis in livers from fed rats. In livers from fasted rats zymosan caused gradual inhibition of glucose production and oxygen consumption from lactate plus pyruvate. Ketogenesis, oxygen consumption, and [14C-]-CO2 production were inhibited by zymosan when the [1-14C]-palmitate was supplied exogenously. However, ketogenesis and oxygen consumption from endogenous sources were not inhibited. An interference with substrate-uptake by the liver may be the cause of the changes in gluconeogenesis and oxidation of fatty acids from exogenous sources. The pretreatment of the rats with gadolinium chloride and the removal of Ca2+ ions did not suppress the effects of zymosan on glucose release, a finding that argues against the participation of Kupffer cells or Ca2+ ions in the liver responses. The hepatic metabolic changes caused by zymosan could play a role in the systemic metabolic alterations reported to occur after in vivo zymosan administration.  相似文献   

7.
We examined the effects of alpha-thrombin (the native enzyme) on neutrophil activation as assessed by the measurement of chemiluminescence. alpha-Thrombin in physiological concentrations (10(-9)-10(-8)M) did not induce neutrophil chemiluminescence. However, when neutrophils were coincubated with opsonized zymosan and alpha-thrombin, the chemiluminescence response to opsonized zymosan was enhanced in a concentration-dependent manner. The neutrophil chemiluminescence responses to opsonized zymosan and to opsonized zymosan plus alpha-thrombin were dependent on the generation of oxygen-derived free radicals since the chemiluminescence was inhibited by superoxide dismutase. The results indicate that thrombin per se does not induce neutrophil chemiluminescence. However, thrombin enhances the chemiluminescence response to opsonized zymosan suggesting an interaction between thrombin and complement receptors in inducing neutrophil activation. The chemiluminescence response to thrombin and opsonized zymosan is the result of oxygen-derived free radicals.  相似文献   

8.
R Goldman  E Ferber  U Zort 《FEBS letters》1992,309(2):190-192
Vanadate (V) potentiated (4- to 10-fold) the activation of cellular phospholipase A2 (PLA2) induced by H2O2 (H), a phorbol ester (T), a Ca(2+)-ionophore (A) and opsonized zymosan in macrophages. V+H induced in intact cells the activation and translocation of PLA2 and protein kinase C (PKC) to the plasma membrane. V+H and V+T+A induced strong chemiluminescence (CL) which was abrogated by a specific NADPH oxidase inhibitor diphenylene iodonium (DPI). DPI markedly suppressed the stimulation of PLA2 by V+T+A and V+OZ. The results suggest that the formation of endogenous reactive oxygen species (ROS) is important for PLA2 activation.  相似文献   

9.
Using rat complement-treated zymosan particles a rosetting of purified rat peritoneal mast cells could be demonstrated. The question was investigated whether the binding of activated complement could be a trigger of histamine release. Varying the degree of complement label on the zymosan particles, the time and temperature of incubation and the dependence on Ca2+ ions, we could not induce a release of histamine in any case. The addition of labeled zymosan increased slightly the mediator release induced by ATP. The immunologic significance of the complement receptors on mast cells is still unclear.  相似文献   

10.
Patch-clamp recordings were used to study the effect of zymosan adsorption on membranes of freshly isolated peritoneal macrophages of mouse. Superfusion of adherent macrophages by zymosan in the on-cell pipette configuration stimulated the appearance of anion channels after a varying time delay in the minute range. The channel is activated by passing through a stage of fluctuations of increasing amplitude. Once the full channel current has been reached, the fluctuations become transformed into the typical current pattern of three well-defined conducting channel states. The adoption of the two substates appeared to be dependent on zymosan. Up to nine simultaneously open anion channels could be observed with a single channel conductance of 220-400 pS. Absence of external Ca2+ had no inhibiting influence on the effect of zymosan. Anion channels could in some cases be observed under control conditions, after attachment of the pipette to the membrane. The channel activation could be mimicked by addition of A23187 to calcium-containing bath solutions. There is evidence that a zymosan-mediated rise of intracellular Ca2+ might be involved in the stimulus response coupling. The activation of calcium-dependent potassium channels was not observed.  相似文献   

11.
45Ca2+ release from a heavy fraction of rabbit skeletal muscle microsomes was induced by chemical depolarization (replacement of 0.15 M K gluconate with 0.15 M choline Cl), or addition of Ca2+ plus caffeine, or both. The time courses of Ca2+ release were investigated with a multimixing chemical quench apparatus by quenching the Ca2+ release reaction using 10 mM EGTA and 5 microM ruthenium red. At low ATP (e.g. 0.2 mM) and low extravesicular [Ca2+] (e.g. 0.1 microM), the time course of depolarization-induced Ca2+ release was similar to that determined by a spectrophotometric method (Ikemoto, N., Antoniu, B., and Kim, D.H. (1984) J. Biol. Chem. 259, 13151-13158). An increase of the extravesicular [Ca2+] up to 5 microM, or addition of high concentrations of ATP (e.g. 7.5 mM), shortened the lag phase that precedes depolarization-induced Ca2+ release and increased the amount of Ca2+ released. On the other hand, upon addition of several millimolars ATP the rate of (Ca2+ plus caffeine)-induced Ca2+ release was increased, resulting in the same time course as that of depolarization-induced Ca2+ release. Induction of Ca2+ release by combined application of chemical depolarization and Ca2+ plus caffeine resulted in the same time course as that induced by either method alone, suggesting that both types of Ca2+ release are mediated by a common channel rather than separate channels.  相似文献   

12.
Isolated sarcoplasmic reticulum vesicles exhibited different functional characteristics in the presence of zwitterionic as compared to anionic buffers. In the absence of oxalate, dicarboxylic anions (e.g. maleate, succinate) in a dose-dependent manner enhanced ATP-supported Ca2+ accumulation, the ensuing spontaneous Ca2+ release, and Ca2+-dependent ATPase activity compared to zwitterionic buffers (e.g. piperazine-N,N'-bis(2-ethanesulfonic acid) (Pipes) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (Hepes). This was not attributed to ionic strength and osmotic effects. The additional anion-dependent Ca2+ accumulation was linked to augmented Ca2+-dependent ATPase activity, and both could be induced by the addition of anion at any time during Ca2+ accumulation as long as ATP was present. Since the initial Ca2+ accumulation rates and acyl phosphoenzyme formation were the same between the two buffer classes, and the presence of either oxalate (a Ca2+-precipitating anion) or A23187 (a Ca2+ ionophore) abolished differences in Ca2+-dependent ATPase activity between the two buffer classes, it is likely that conditions favoring high intravesicular Ca2+ concentration allow the expression of the observed effect of the anions. Initial spontaneous Ca2+ release in the presence of maleate was not caused by ATP depletion, and it was virtually absent in Pipes buffer. The rate of spontaneous release was also stimulated in a dose-dependent manner by the dicarboxylic anions, with the time of release being related to the time of anion addition and not ATP addition. A later, more rapid release phase in either maleate or Pipes buffer corresponded to ATP depletion, and could be duplicated at any time in the Ca2+ accumulation/release cycle by the addition of an ATP trap. With an ATP-regenerating system present or with very high ATP concentrations, the maximal peak Ca2+ accumulation in Pipes buffer could approach that in maleate buffer. The data suggest that dicarboxylic anions stimulate the filling of a Ca2+ compartment from which spontaneous Ca2+ release occurs.  相似文献   

13.
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production.  相似文献   

14.
The effect of pentoxifylline pretreatment on the lucigenin-augmented chemiluminescence and dismutase-inhibitable superoxide production of human neutrophils and mononuclear cells (MNCs) was studied. Pentoxifylline at 20–2,000 μg/ml enhanced the lucigenin-augmented chemiluminescence (118–165% of the control, P < 0.01) of phorbol myristate acetate (PMA)-stimulated MNC. Pentoxifylline at 20–2,000 μg/ml increased the MNC superoxide production, i.e., 142–171% of the control (P < 0.05) using PMA stimulation and 145–159% of the control (P < 0.01) using opsonized zymosan stimulation. In contrast, pentoxifylline (up to 2,000 μg/ml) did not influence the lucigenin-augmented chemiluminescence and superoxide production of human neutrophils, stimulated by either PMA or opsonized zymosan. These results suggest that pentoxifylline is an immunomodulator and may have potential usefulness in the enhancement of immune defenses in compromised hosts.  相似文献   

15.
Aromatic monoamines may contribute to both chemical and physical protection of plants. Addition of phenylethylamine (PEA) and benzylamine to tobacco suspension culture (cell line BY-2) induced a very rapid and transient generation of two active oxygen species (AOS), H2O2 and superoxide anion, both detected with chemiluminescence. Electron spin resonance spectroscopy revealed that hydroxy radicals are also produced. With laser-scanning confocal microscopy, fluorescence spectroscopy and microplate fluorescence reading, intracellular H2O2 production was detected using dichlorofluorescin diacetate as a fluorescent probe. Following AOS production, cytosolic Ca2+ concentration ([Ca2+]c) of the tobacco cells, monitored with luminescence of transgenic aequorin, increased and attained to a peak level 12 s after PEA addition. The PEA-induced increase in [Ca2+]c was inhibited by a Ca2+ chelator, Ca2+ antagonists and AOS scavengers, suggesting that PEA-induced AOS triggered a Ca2+ influx across the plasma membrane.  相似文献   

16.
The detergent-induced amplification of lucigenin-dependent chemiluminescence of O2-, generated by xanthine oxidase or microsomal NADPH oxidase was studied. An assay system is described which is at least 10 times more sensitive than normal lucigenin-dependent chemiluminescence due to the amplification by high concentrations of octylphenylpolyethylene glycol (Triton X-100). Compared to the superoxide dismutase-sensitive reduction of acetylated cytochrome c, a 3750-fold lower amount of microsomal protein was necessary to produce an O2- signal 10-fold above the background. In contrast to cytochrome c reduction, detergent-amplified chemiluminescence of lucigenin was completely inhibited by superoxide dismutase and therefore more selective for O2-. The membrane-bound and Triton X-100-solubilized NADPH oxidase from microsomes of macrophages was activated by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid and inhibited by Ca2+ and sodium dodecyl sulfate. The membrane-bound enzyme showed a Km value of 1.35 microM, which decreased to 0.95 microM after the addition of 12% (g/g) Triton X-100. The Km and Vmax values of soluble xanthine oxidase were not influenced by Triton X-100, indicating that the enzyme activities were not impaired by the high concentrations of detergent.  相似文献   

17.
The effect of the opsonization by zymosan and quartz particles on the chemiluminescence was investigated on human neutrophil granulocytes. Opsonization of zymosan enhanced the chemiluminescence response, while opsonized quartz inhibited the chemiluminescence reaction. Calcium ionophore A 23187 treatment did not influence the chemiluminescence of quartz but the light signal in the presence of quartz decreased rapidly. In parallel experiments the protein pattern of zymosan treated neutrophils was investigated by high resolution two-dimensional polyacrylamide gel electrophoresis.  相似文献   

18.
The oxidative metabolism of macrophages in vitamin E deficiency was studied on Aug-Lac strain rats. Vitamin E deficiency was shown to enhance luminol-dependent chemiluminescence of macrophages stimulated by opsonized zymosan. There was also an increase in microviscosity of macrophage membrane lipid phase, that was estimated with a fluorescent probe. The incubation of macrophages with dl-alpha-tocopherol led to the inhibition of macrophage chemiluminescence. Superoxide dismutase, glutathione peroxidase and glutathione reductase activity was not affected by vitamin E deficiency.  相似文献   

19.
Model derivatives of plasmalogens and chemically synthesized oxidative degradation products as found e.g. during oxidation of low density lipoproteins show strong effects on phagocytosis induced secretion of reactive oxygen species of macrophages which was measured by luminol-enhanced chemiluminescence. Whereas a plasmalogen epoxide showed enhancing effects in submicromolar range, inhibition was found with higher concentrations as well as with alpha-hydroxyaldehydes. The substances showed only little effects on the non-cellular ROS-dependent chemiluminescence of the reaction between hydrogen peroxide and opsonized zymosan and no cytotoxic effects under the assay conditions used. These results show that oxidative modification and degradation of plasmalogens occuring also under pathophysiological situations in vivo produces effective modulators of macrophage function which could be important; e.g. during inflammation or atherogenesis.  相似文献   

20.
The Ca2+-transporting activity, lipoperoxide chemiluminescence and phospholipid spectrum of sarcoplasmic reticular membranes were studied in ischemic rats. It was shown that a substantial reduction in Ca2+ uptake rate by the sarcoplasmic reticulum occurred within the first 30 minutes and correlated with the increase in chemiluminescence intensity and accumulation of lysophosphatidylcholine. It has been suggested that free radical lipid peroxidation and phospholipase activation are directly related to the reduction of Ca2+-transporting rate by sarcoplasmic reticulum in myocardial ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号