首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While many novel associations predicted by two-hybrid library screens reflect actual biological associations of two proteins in vivo, at times the functional co-relevance of two proteins scored as interacting in the two-hybrid system is unlikely. The reason for this positive score remains obscure, which leads to designating such clones as false positives. After investigating the effect of over-expressing a series of putative false positives in yeast, we determined that expression of some of these clones induces an array of biological effects in yeast, including altered growth rate and cell permeability, that bias perceived activity of LacZ reporters. Based on these observations, we identify four simple strategies that can assist in determining whether a protein is likely to have been selected in a two-hybrid screen because of indirect metabolic effects.  相似文献   

2.
Although yeast two-hybrid experiments are commonly used to identify protein interactions, the frequent occurrence of false negatives and false positives hampers data interpretation. Using both yeast one-hybrid and two-hybrid experiments, we have identified potential sources of these problems: the media preparation protocol and the source of the yeast nitrogen base may not only impact signal range but also effect whether a result appears positive or negative. While altering media preparation may optimize signal differences for individual experiments, media preparation must be reported in detail to replicate studies and accurately compare results from different experiments.  相似文献   

3.
P. James  J. Halladay    E. A. Craig 《Genetics》1996,144(4):1425-1436
The two-hybrid system is a powerful technique for detecting protein-protein interactions that utilizes the well-developed molecular genetics of the yeast Saccharomyces cerevisiae. However, the full potential of this technique has not been realized due to limitations imposed by the components available for use in the system. These limitations include unwieldy plasmid vectors, incomplete or poorly designed two-hybrid libraries, and host strains that result in the selection of large numbers of false positives. We have used a novel multienzyme approach to generate a set of highly representative genomic libraries from S. cerevisiae. In addition, a unique host strain was created that contains three easily assayed reporter genes, each under the control of a different inducible promoter. This host strain is extremely sensitive to weak interactions and eliminates nearly all false positives using simple plate assays. Improved vectors were also constructed that simplify the construction of the gene fusions necessary for the two-hybrid system. Our analysis indicates that the libraries and host strain provide significant improvements in both the number of interacting clones identified and the efficiency of two-hybrid selections.  相似文献   

4.
The yeast two-hybrid system is a molecular genetic test for protein interaction. Here we describe a step by step procedure to screen for proteins that interact with a protein of interest using the two-hybrid system. This process includes, construction and testing of the bait plasmid, screening a plasmid library for interacting fusion proteins, elimination of false positives and deletion analysis of true positives. This procedure is designed to allow investigators to identify proteins and their encoding cDNAs that have a biologically significant interaction with your protein of interest.  相似文献   

5.
Data of protein-protein interactions provide valuable insight into the molecular networks underlying a living cell. However, their accuracy is often questioned, calling for a rigorous assessment of their reliability. The computation offered here provides an intelligible mean to assess directly the rate of true positives in a data set of experimentally determined interacting protein pairs. We show that the reliability of high-throughput yeast two-hybrid assays is about 50%, and that the size of the yeast interactome is estimated to be 10,000-16,600 interactions.  相似文献   

6.
《Gene》1998,215(1):143-152
Identification of all human protein–protein interactions will lead to a global human protein linkage map that will provide important information for functional genomics studies. The yeast two-hybrid system is a powerful molecular genetic approach for studying protein–protein interactions. To apply this technology to generate a human protein linkage map, the first step is to construct two-hybrid cDNA libraries that cover the entire human genome. With a homologous recombination-mediated approach, we have constructed a modular human EST-derived yeast two-hybrid library in the Gal4 activation domain-based vector, pACT2. Quality analysis of this library indicated that the approach of constructing two-hybrid cDNA libraries from individually arrayed human EST clones is feasible, and such a two-hybrid library is suitable for detecting protein–protein interactions. This is also the first time that a comprehensive two-hybrid system cDNA library has been constructed from a collection of individually arrayed EST clones.  相似文献   

7.
Since its inception, the yeast two-hybrid (Y2H) system has proven to be an efficient system to identify novel protein-protein interactions. However, Y2H screens are sometimes criticized for generating high rates of false-positives. Minimizing false-positive interactions is especially important in proteome wide high-throughput (HT) Y2H. Here, we summarize various approaches that reduce false-positives in HT-Y2H projects. We evaluated the potential of examining putative positives after removing the prey encoding plasmid by negative selection. We found that this method reliably identifies false-positives caused by spontaneous conversion of baits into auto-activators and provides significant time-savings in HT screens. In addition, we present a method to eliminate an important source of false-positives: contaminating prey plasmids. Y2H interactors can be wrongly identified due to the presence of two or more different plasmids in the cells of a single yeast colony. Of these independent plasmids, only one encodes a genuine interactor. Contaminating plasmids are eliminated by extended culture of yeast cells under positive selection for the interaction, allowing the identification of the true interaction partner.  相似文献   

8.

Background  

Yeast two-hybrid (Y2H) screens have been among the most powerful methods to detect and analyze protein-protein interactions. However, they suffer from a significant degree of false negatives, i.e. true interactions that are not detected, and to a certain degree from false positives, i.e. interactions that appear to take place only in the context of the Y2H assay. While the fraction of false positives remains difficult to estimate, the fraction of false negatives in typical Y2H screens is on the order of 70-90%. Here we present novel Y2H vectors that significantly decrease the number of false negatives and help to mitigate the false positive problem.  相似文献   

9.
目的 利用酵母双杂交技术在活细胞内筛选并回转验证与PML-C结构域相互作用的蛋白质.方法 通过诱饵质粒pGBKT7-PML-C,利用酵母双杂交系统从白血病细胞cDNA文库中筛选与PML-C结构域相互作用的蛋白质.结果 利用酵母双杂交技术筛选到43个能与PML-C结构域相互作用的克隆;经进一步的归类与酵母回转试验得到9个阳性克隆.结论 在细胞内PML-C结构域能与多种蛋白质有相互作用.中性粒细胞弹性蛋白酶(neutrophil elastase,NE)介导的急性早幼粒细胞白血病的发生可能与这些相互作用所致的生物学功能改变有关.  相似文献   

10.
11.
12.
The yeast two-hybrid system is frequently used to identify protein-protein interactions. Confirming the specificity of candidate clones requires separation and isolation of yeast plasmids, propagation in bacteria and testing combinations of DNA-binding and activation domain hybrids in yeast. In order to simplify this procedure, we developed a rapid method based on PCR amplification of library insert DNAs and in vivo cloning into the activation domain hybrid vector. Reporter gene activity is assayed in parallel for combinations with different DNA-binding domain hybrids. Further characterization of inserts does not require plasmid isolation and intermediate hosts.  相似文献   

13.
Peptide aptamers are combinatorial proteins that specifically bind intracellular proteins and modulate their function. They are powerful tools to study protein function within complex regulatory networks and to guide small-molecule drug discovery. Here we describe methodological improvements that enhance the yeast two-hybrid selection and characterization of large collections of peptide aptamers. We provide a detailed protocol to perform high-efficiency transformation of peptide aptamer libraries, in-depth validation experiments of the bait proteins, high-efficiency mating to screen large numbers of peptide aptamers and streamlined confirmation of the positive clones. We also describe yeast two-hybrid mating assays, which can be used to determine the specificity of the selected aptamers, map their binding sites on target proteins and provide structural insights on their target-binding surface. Overall, 12 weeks are required to perform the protocols. The improvements on the yeast two-hybrid method can be also usefully applied to the screening of cDNA libraries to identify protein interactions.  相似文献   

14.
MOTIVATION: Experimental limitations in high-throughput protein-protein interaction detection methods have resulted in low quality interaction datasets that contained sizable fractions of false positives and false negatives. Small-scale, focused experiments are then needed to complement the high-throughput methods to extract true protein interactions. However, the naturally vast interactomes would require much more scalable approaches. RESULTS: We describe a novel method called IRAP* as a computational complement for repurification of the highly erroneous experimentally derived protein interactomes. Our method involves an iterative process of removing interactions that are confidently identified as false positives and adding interactions detected as false negatives into the interactomes. Identification of both false positives and false negatives are performed in IRAP* using interaction confidence measures based on network topological metrics. Potential false positives are identified amongst the detected interactions as those with very low computed confidence values, while potential false negatives are discovered as the undetected interactions with high computed confidence values. Our results from applying IRAP* on large-scale interaction datasets generated by the popular yeast-two-hybrid assays for yeast, fruit fly and worm showed that the computationally repurified interaction datasets contained potentially lower fractions of false positive and false negative errors based on functional homogeneity. AVAILABILITY: The confidence indices for PPIs in yeast, fruit fly and worm as computed by our method can be found at our website http://www.comp.nus.edu.sg/~chenjin/fpfn.  相似文献   

15.
Senataxin is a large 303 kDa protein linked to neuron survival, as recessive mutations cause Ataxia with Oculomotor Apraxia type 2 (AOA2), and dominant mutations cause amyotrophic lateral sclerosis type 4 (ALS4). Senataxin contains an amino-terminal protein-interaction domain and a carboxy-terminal DNA/RNA helicase domain. In this study, we focused upon the common ALS4 mutation, L389S, by performing yeast two-hybrid screens of a human brain expression library with control senataxin or L389S senataxin as bait. Interacting clones identified from the two screens were collated, and redundant hits and false positives subtracted to yield a set of 13 protein interactors. Among these hits, we discovered a highly specific and reproducible interaction of L389S senataxin with a peptide encoded by the antisense sequence of a brain-specific non-coding RNA, known as BCYRN1. We further found that L389S senataxin interacts with other proteins containing regions of conserved homology with the BCYRN1 reverse complement-encoded peptide, suggesting that such aberrant protein interactions may contribute to L389S ALS4 disease pathogenesis. As the yeast two-hybrid screen also demonstrated senataxin self-association, we confirmed senataxin dimerization via its amino-terminal binding domain and determined that the L389S mutation does not abrogate senataxin self-association. Finally, based upon detection of interactions between senataxin and ubiquitin–SUMO pathway modification enzymes, we examined senataxin for the presence of ubiquitin and SUMO monomers, and observed this post-translational modification. Our senataxin protein interaction study reveals a number of features of senataxin biology that shed light on senataxin normal function and likely on senataxin molecular pathology in ALS4.  相似文献   

16.
17.
Yeast two-hybrid screens are an important method for mapping pairwise physical interactions between proteins. The fraction of interactions detected in independent screens can be very small, and an outstanding challenge is to determine the reason for the low overlap. Low overlap can arise from either a high false-discovery rate (interaction sets have low overlap because each set is contaminated by a large number of stochastic false-positive interactions) or a high false-negative rate (interaction sets have low overlap because each misses many true interactions). We extend capture-recapture theory to provide the first unified model for false-positive and false-negative rates for two-hybrid screens. Analysis of yeast, worm, and fly data indicates that 25% to 45% of the reported interactions are likely false positives. Membrane proteins have higher false-discovery rates on average, and signal transduction proteins have lower rates. The overall false-negative rate ranges from 75% for worm to 90% for fly, which arises from a roughly 50% false-negative rate due to statistical undersampling and a 55% to 85% false-negative rate due to proteins that appear to be systematically lost from the assays. Finally, statistical model selection conclusively rejects the Erd?s-Rényi network model in favor of the power law model for yeast and the truncated power law for worm and fly degree distributions. Much as genome sequencing coverage estimates were essential for planning the human genome sequencing project, the coverage estimates developed here will be valuable for guiding future proteomic screens. All software and datasets are available in and , -, and -, and are also available from our Web site, http://www.baderzone.org.  相似文献   

18.
The two-hybrid system is a genetic method for detecting protein-protein interactions. The assay can be applied to random libraries or arrays of colonies that express defined pairs of proteins. Arrays enable the testing of all possible protein pairs for interactions in a systematic fashion. The array format makes a large number of individual assays comparable and thus greatly simplifies the identification of false positives. Two-hybrid arrays have been used to study interactions among the proteins of yeast, hepatitis C virus, vaccinia virus, Drosophila, Caenorhabditis elegans, mouse and other species, and have already identified thousands of interactions.  相似文献   

19.
20.
The majority of small molecule drugs act on protein targets to exert a therapeutic function. It has become apparent in recent years that many small molecule drugs act on more than one particular target and consequently, approaches which profile drugs to uncover their target binding spectrum have become increasingly important. Classical yeast two-hybrid systems have mainly been used to discover and characterize protein-protein interactions, but recent modifications and improvements have opened up new routes towards screening for small molecule-protein interactions. Such yeast "n"-hybrid systems hold great promise for the development of drugs which interfere with protein-protein interactions and for the discovery of drug-target interactions. In this review, we discuss several yeast two-hybrid based approaches with applications in drug discovery and describe a protocol for yeast three-hybrid screening of small molecules to identify their direct targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号