首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王倩  史欢欢  于振林  王天厚  汪承焕 《生态学报》2022,42(20):8300-8310
盐度和种间作用是影响湿地植物群落构建的关键因子。然而,已有研究主要集中于植物成体阶段,我们对生活史早期更新阶段的种间相互作用了解十分有限。崇明东滩国家级自然保护区是位于长江口的重要湿地,外来入侵植物互花米草对优势土著物种海三棱藨草的竞争排斥对当地生态系统造成了严重的负面影响。通过受控实验探讨了盐度及种间作用对海三棱藨草和互花米草种子萌发及生长的影响,以深入了解更新过程在盐沼湿地植物群落构建中的作用。结果表明,在培养皿中盐度对海三棱藨草的萌发有显著抑制作用,互花米草的萌发率受盐度影响不显著但萌发进程被延迟。混种处理对两者的萌发存在一定促进效应,且其作用强度受到盐度的调控。海三棱藨草与互花米草种子在萌发阶段的相互促进并非是通过化感作用实现的,可能是由于萌发过程对盐分的吸收减弱了盐胁迫的影响。盆栽条件下,两物种混种时的萌发及生长表现(高度、地上生物量)较单种时有所下降,但差异不显著。种间竞争受环境胁迫程度及生活史阶段的影响,竞争作用在胁迫较弱的淡水环境及生活史后期更强。盐沼湿地植物群落在形成早期受到盐度等环境因子的影响较大,不同植物对盐胁迫的响应是影响种群建成的主导因素,后期种间竞争的重要性不断增加,最终决定了植物群落的整体格局。  相似文献   

2.
A study was conducted to determine germination response to temperature and salinity and seedling response to salinity by three height forms of the salt marsh grass Spartina alterniflora Loisel. Germination tests showed that seeds cannot withstand drying at moderate temperature, as viability was lost within 40 days in seeds stored dry at 72 F. Cold storage at 43 F is adequate to prevent desiccation up to 40 days, but after 8 months viability is lost. Viability is retained at least 8 months when seeds are stored in sea water at 43 F. Germination response was good in a 65–95 F alternating diurnal thermoperiod but was poor in a 72 F constant thermoperiod. Germination response to salinity was an inverse curvilinear relationship with germination inhibition at high salinities apparently due to osmotic effects. The maximum tolerance limit for germination lies between 6 and 8 % NaCl. Seeds from short, medium, and tall plants responded similarly in storage and temperature studies. However, in salinity studies, seeds of the Ocracoke Island short form and the Oak Island tall form performed best. A logarithmic curve best described seedling growth response to various NaCl levels. Growth response as measured by seedling dry weight was best in 0.5 % NaCl solution. Seedlings grew taller in both 0.5 and 1.0 % NaCl than in 0 % NaCl. No significant difference in seedling growth response due to height form of the parent plant was detected. Thus, on the basis of germination and seedling responses, the height forms of S. alterniflora in North Carolina salt marshes are best described as ecophenes.  相似文献   

3.
We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species.  相似文献   

4.
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis, were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora, and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.  相似文献   

5.
Question: In seeds which are regularly consumed by waterbirds in the field, how does gut‐passage modify their response to salinity gradients? Location: Doñana National Park salt marsh, south‐west of Spain. Methods: Seeds of Scirpus litoralis and Scirpus maritimus were collected and force fed to mallards (Anas platyrhynchos). Both the ingested seeds (passage) and non‐ingested seeds (controls) were exposed, in germination chambers, to a salinity range similar to that observed in the field (0–32 dS/m). After 30 days, the total percentage germination, the duration of the dormancy period and the germination speed were computed. The response of the different germination parameters to ingestion and salinity was analyzed using generalized lineal models. Recovery tests on seeds that did not germinate in the various treatments and tests of the effect of ingestion on the intrinsic variability in seed response were also performed. Results: An increase in salinity reduced germinability and increased the length of dormancy, while gut pas sage increased the intrinsic variability of the temporal seed response in both species. In S. litoralis there was a significant interaction between the effects of salinity and passage on germination rate. Passage increased germination rate at low salinities (≤2 dS/m) but decreased it at high salinities (≥4 dS/m). Conclusion: Gut‐passage by ducks significantly changes seed response to salinity. The outcome of plant‐animal interactions can be influenced by environmental gradients. Studies of germination in response to gut passage that do not take such gradients into account may produce misleading results.  相似文献   

6.
The threatened Gulf of St. Lawrence Aster, Symphyotrichum laurentianum Fernald (Nesom), is an annual coastal halophyte of the southern Gulf of St. Lawrence, Canada. We examined the effects of salinity (0–20 g/L) and temperature (16–30°C) on germination of S. laurentianum seeds over 32 days. The time‐course of germination was significantly affected by both salinity and temperature. At lower temperatures (16°C and 23°C), germination was inhibited by salt water at days 16 and 32. However, at 30°C germination rates after 16 days were highest at an intermediate salinity, whereas after 32 days germination was uniformly high in all salinity treatments. Overall, the effect of temperature on germination was much stronger than the effect of salinity. Delays in germination resulting from exposure to salinity or from low soil temperatures could set up strong size asymmetries between seedlings of S. laurentianum and the surrounding vegetation, leading to suppression of growing seedlings via shading. Because germination has the potential to be a significant population bottleneck for this seed‐dependent annual, conservation efforts should consider microsite suitability for germination in the management of natural populations and in the selection of sites for explants.  相似文献   

7.
Abstract

The effects of temperature and salinity (NaCl) on germination of Hordeum maritimum With, (halophyte) and H. murinum L. (glycophyte) seeds were investigated. Dehulled caryopses were used for monthly germination trials, starting from November (120 days of after‐ripening in darkness at 20±1°C). Trials were continued for one year. Differences in germination response between the two species were observed, confirming that H. Maritimum is better adapted to high salinity levels and to variations in external temperature than H. murinum. H. maritimum showed a germination control mechanism related to after‐ripening time and based on seed dormancy break/resumption. At higher temperature (30°C), thermodormancy was also recorded. No germination strategies were observed in H. murinum that is relatively insensitive to the combined effects of temperature and salinity. Thus, in virtually all treatments, H. murinum exhibited a higher germination rate compared with H. maritimum, as early as 72 h after imbibition, suggesting that dormancy, both in the presence or absence of salt, is totally abolished by early fall or at the latest in winter.  相似文献   

8.
In order to determine how salinity and exposure time affect seed viability and germination, seeds of five halophytes, Atriplex prostrata, Hordeum jubatum, Salicornia europaea, Spergularia marina, and Suaeda calceoliformis were exposed to 3.0, 5.0, and 10.0% NaCl solutions for 30, 60, 90, 365, and 730 d. Recovery experiments in distilled water indicated significantly different species responses to salinity over time. Percentage germination and rate of germination in H. jubatum were dramatically reduced following extended exposure and all seeds exposed to 10% NaCl for > 1 yr failed to germinate. Spergularia marina seeds were stimulated following short-term exposure to 3% NaCl; however, germination was delayed and overall germination was significantly reduced with exposure time in the two higher salinity levels. Percentage germination in A. prostrata decreased over time, but salinity level was not related to this reduction. Germination of S. europaea and S. calceoliformis, the most salt-tolerant species being tested, was stimulated by exposure to high salinity. Both species had a significant increase in percentage germination and in the germination rate when compared to seeds germinated in distilled water. Baseline germination data from seeds placed in 0, 1, 2, and 3% NaCl solutions indicated that S. europaea and S. calceoliformis were the only species to germinate in the 3% NaCl solution. Spergularia marina failed to germinate in the 2% NaCl treatment, and germination of A. prostrata and H. jubatum was significantly reduced at this salinity level. It is concluded that prolonged exposure to saline solutions can inhibit or stimulate germination in certain species, and the resulting germination and recovery responses are related to the duration and intensity of their exposure to salt in their natural habitats.  相似文献   

9.
Ethylene is invariably produced during seed germination but its role in regulating seed dormancy and germination is poorly understood. Seeds of 22 halophytic species having different life forms – salt secreting dicots, salt secreting monocots, stem succulents and leaf succulents were germinated in Petri dishes kept in a growth chamber set at 20/30 °C (night/day) temperature and a 12 hr light period. Sodium chloride and ethephon were added to the medium from the beginning of the experiment. Seed germination was recorded every other day for twenty days. Application of ethylene did not have any significant effect on releasing seeds from innate dormancy. However, it appeared to have a role in alleviation of salinity effects which varied from negative in certain species to almost complete alleviation of high salinity effects in others.Our data indicates that ethylene appears to have little role in breaking innate seed dormancy however, in most halophyte seeds studied, application of ethylene alleviate the salinity effect to various degrees. Halophyte seeds which could germinate under saline conditions approaching twice the salinity of seawater may offer clues to understand management of seed germination under highly saline conditions. To cite this article: M.A. Khan et al., C. R. Biologies 332 (2009).  相似文献   

10.
Soil salinization and alkalinization frequently co-occur in nature, but there is little information on the interactive effects of salt and alkali stresses on plants. Seed germination and early seedling growth are crucial stages for plant establishment. We investigated the interactive effects of salt and alkali stresses on seed germination, germination recovery and seedling growth of a halophyte Spartina alterniflora. Seed germination percentage was not significantly reduced at low salinity (≤ 200 mM) at pH 6.63–9.95, but decreased with increased salinity and pH. Ungerminated seeds germinated well after transfer to distilled water from treatment solutions, indicating that seeds can remain viable in high salt–alkaline habits. Shoot growth was stimulated at low salinity and pH, but decreased with increased salinity and pH. Radicle elongation decreased sharply with increased salinity and pH, and was significantly inhibited when pH ≥ 9.0, indicating that the radicles are very sensitive to salt–alkaline stress. The deleterious effects of salinity or high pH alone were less than when combined. A reciprocal enhancement of salt and alkali stresses is a characteristic feature for salt–alkaline stress. Stepwise regression analysis indicates that salinity is the dominant factor, while pH and buffer capacity are secondary for salt–alkaline mixed stress.  相似文献   

11.
Germination responses of Diplotaxis harra to temperature and salinity   总被引:1,自引:1,他引:0  
Diplotaxis harra (Forssk.) Boiss, an annual herb in the family of Brassicaceae, is widely distributed in many sandy and gypseous areas in southern Tunisia. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after seed transfer to distilled water. The germination responses of the seeds in complete darkness were determined over a wide range of temperatures (5, 10, 15, 20, 25 and 30 °C) and salinities (0, 50, 100, 150 and 200 mM NaCl). Germination was inhibited by either an increase or decrease in temperature from the optimal temperature (15 °C). Highest germination percentages were obtained under non-saline conditions and an increase in NaCl concentrations progressively inhibited seed germination. Rate of germination decreased with an increase in salinity at all temperatures but comparatively higher rates were obtained at 15 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 200 mM NaCl. Seeds were transferred from salt solution to distilled water after 20 days, and those from low salinities recovered at all temperatures. At NaCl concentration of 200 mM, the recovery of germination was completely inhibited.  相似文献   

12.
The halophyte, Salicornia pacifica var. utahensis (Tiderstorm) Munz produces seed under high salinity conditions, and deposits its seed on saline soil. Experiments were conducted to determine the effect of salinity, temperature and growth regulators on germination. Results indicate that the seeds can germinate at very high salt concentration (5% NaCl). Germination was sensitive to the changes in temperature regimes. At higher 30–20 C, light-dark sequence, no germination occurred at 3, 4 and 5% NaCl treatments. On the other hand, 30% germination did occur at 5% NaCl treatment at a temperature regime of 15–5 C. These seeds required light for germination. Only 50% germination occurred in the non-saline control in the dark and the addition of NaCl further reduced germination. The GA3 partially alleviated the inhibitory effect of NaCl and darkness. Kinetin did not promote germination.  相似文献   

13.
In order to study the salinity tolerance of pistachio (Pistacia vera L.), embryos developed from mature seeds were isolated and cultured in vitro and subjected to different NaCl concentrations (0, 42.8, 85.5, 171.1 and 256.6 mM) for 30 days. The results showed that in vitro germination of embryonic axes was not affected by the salt concentration. However, the germinated embryo survival rates decreased from 100% for the control to 62.9% for the highest salt concentration (256.6 mM).In addition, the plantlet growth (length of aerial and root parts, number of leaf produced per embryo, as well as the production of total fresh and dry matter for both aerial parts and roots) showed significant differences according the various salt concentrations. To cite this article: B. Benmahioul et al., C. R. Biologies 332 (2009).  相似文献   

14.
Abstract

Effects of temperature and sea water on germination behaviour of Althenia filiformis Petit seeds. - Germination capacity and energy of Althenia filiformis Petit seeds have been investigated, 90 and 180 days after ripening, to carry out a preliminary study on ecology of this species.

This species, halophite and hydrophyte, is spreaded along the coast shores of middle-west mediterranean sea and atlantic shores of Morocco, Spain, Portugal and France.

Seeds were soaked in the dark, at 10°, 20°, 30°C, in solutions at different salt concentration: sea water; sea water diluted in deionized water at ratios (v/v) 1: 2, 1: 4, 1: 8; sea water plus 26 gr/l NaCl; deionized water, as control.

The experimental results show that germination is reduced and delayed when seeds are soaked in progressively concentrated salt solutions; in sea water plus 26 gr/l NaCl seed germination is inhibited.

Seeds pretreated by soaking at 3°C for 10 days in sea water diluted (1:1) by deionized water did not show, when soaked in salt solution at weak and middle concentration, any delay in germination in comparison with unpretreated seeds. On the contrary, pretreated and unpretreated seeds sown in sea water at 30°C had shown, 180 days after ripening, a significant depression in germination values as compared with seeds sown at 20°C.  相似文献   

15.
利用控制实验研究了水分、盐分生态因子对沙地云杉和青海云杉种子萌发和幼苗生长的影响,以探索沙地云杉和青海云杉种子对水分、盐分生态因子的适应性。结果表明:(1)水分胁迫和盐分胁迫对沙地云杉和青海云杉种子萌发具有明显的抑制作用,可显著的降低种子的发芽率,两种云杉种子对水分胁迫的临界值和极限值分别是-0.03、-0.15 MPa和-0.5、-0.58 MPa;对盐分胁迫的临界值和极限值分别是78、148 mmol/L和284、345mmol/L;其幼苗长度随着渗透势和NaCl浓度的增加而显著减小。(2)沙地云杉和青海云杉种子恢复发芽率及恢复后的幼苗长度随着渗透势和NaCl浓度的增加先增加后减少。(3)在相同的水势条件下,PEG溶液比等渗的NaCl溶液对沙地云杉和青海云杉种子萌发具有更大的抑制作用,种子萌发过程中渗透胁迫比离子毒害的抑制作用更大。研究发现,沙地云杉和青海云杉种子对水分和盐分胁迫表现出不同程度的耐受性,两者对盐分胁迫的忍耐能力超过对水分胁迫;而且青海云杉种子比沙地云杉更耐旱、耐盐;早期的低盐和充分的水分条件是沙地云杉和青海云杉存活的关键。  相似文献   

16.
Halophyte species demonstrate differing levels of salt tolerance. Understanding interspecific variation to salinity levels is of value from both the scientific perspective, which includes the identification of traits associated with salinity tolerance, as well as from an applied perspective, which includes identifying plant species for specific salinity restoration and remediation projects. This paper investigates the effects of salinity on germination of 12 Australian species of the plant genus Frankenia L. (Frankeniaceae). We use saline solutions that corresponded to the average soil–water salinity concentrations in the arid zones of inland Australia. These solutions consisted of 10 mM calcium chloride, 30 mM magnesium sulphate, and 450 mM sodium chloride. The aims of our study were: (1) to investigate the germination (germination rates, germination success) of Frankenia seeds to four salinity levels (0%, 10%, 20%, 30%), (2) to test for possible interaction effects between seed mass, germination, and salinity, and (3) to examine the effect of salinity levels on the inhibition of germination and/or seed damage. Species varied in their salt tolerance for germination rates and success. Species with larger seeds had higher germination rates and germination success for high salinity levels. Several species did not germinate well at any salinity level. Finally, no seeds were adversely affected by exposure to high salinity levels pre-germination. There is potential for including some Frankenia species in remediation and revegetation projects in areas affected by salinity, and also as garden plants in saline regions.  相似文献   

17.
The stem succulent perennial halophyteHaloxylon recurvum Bungeex. Boiss. grows and produces seed under highly saline conditionsand seeds are deposited in saline soils. Experiments were conductedto determine the effect of salinity and temperature on the germinationof seeds. Results indicate that seeds can germinate at veryhigh salt concentrations (500 mM). However, highest germinationpercentages were obtained in distilled water. Cooler thermoperiodspromoted germination, while high temperatures significantlyinhibited the germination of seeds at all NaCl concentrationstested. Rate of germination decreased with increases in salinity.At higher thermoperiods the rate of germination was significantlylower in comparison to lower thermoperiods. Seeds recover afterbeing transferred to distilled water and recovery was higherfrom higher salinity concentrations and lower thermoperiods.Final recovery germination percentages in high salt treatmentswere significantly lower than non-saline controls, indicatingthat exposure to high concentration of NaCl permanently inhibitedgermination. Germination; halophyte; Haloxylon recurvum recovery of germination; salinity; temperature  相似文献   

18.
Phleum sardoum is an endemic psammophilous species of Sardinia, growing exclusively on coastal sandy dunes. The effect of glumes on seed germination, germination requirements at constant (5–25°C) and alternating (25/10°C) temperatures, both in the light (12/12 h) and in the dark were evaluated, as well as the effect of a dry after‐ripening period (90 days at 25°C), the salt stress effect (0–600 mmol NaCl) and its recovery on seed germination. The presence of glumes reduced final germination percentages. For fresh naked seeds, high germination percentages were observed at 10°C. Dry after‐ripening increased germination rate at low temperatures, but did not affect final germination percentages. NaCl determined a secondary salt‐induced dormancy which recovery interrupted only partially. Our results highlighted that this species has its optimum of germination during autumn–winter when, under a Mediterranean climate, water availability is highest and soil salinity levels are minimal.  相似文献   

19.
We tested the effects of cold stratification, temperature, light and NaCl on seed germination and germination recovery and of NaCl on radicle growth and radicle elongation recovery of Kalidium caspicum, a small leafy succulent shrub dominant in saline deserts in northwest China. In all conditions of temperature and light/darkness, germination percentages and rates of cold-stratified seeds were significantly higher than those of nonstratified seeds. Germination of a high percentage of both nonstratified and stratified seeds was inhibited by 0.2 M NaCl, and 0.6 M NaCl completely inhibited germination. Nongerminated seeds germinated after they were transferred from NaCl solutions to distilled water. Radicle elongation significantly decreased with increase in salinity, and it was completely inhibited by ≥1.0 M NaCl; radicle elongation recovered in young seedlings pretreated by 10 days of incubation in ≤0.4 M NaCl. Results show that seed germination and early seedling growth of K. caspicum are salt tolerant, and these characteristics help explain why this species can survive and dominate salt habitats, such as those in the Junggar desert in Xinjiang, northwest China.  相似文献   

20.
盐度和淹水对长江口潮滩盐沼植物碳储量的影响   总被引:1,自引:0,他引:1  
薛莲  李秀珍  闫中正  张骞  丁文慧  黄星 《生态学报》2018,38(9):2995-3003
盐生植物是盐沼有机碳储存的"临时库",也是土壤有机碳累积的主要来源,其碳储量大小对盐沼生态系统"碳汇"功能的发挥十分重要。以长江口潮滩本地种芦苇(Phragmites australis)和海三棱藨草(Scirpus mariqueter),及入侵种互花米草(Spartina alterniflora)为研究对象,采用单因素盆栽实验,模拟分析淹水盐度(0、5、10、15、25和35)、淹水深度(0、10、20、40、60cm和80cm)和淹水频率(每天、每3天、每7天、每10天和每15天)变化对各盐生植物地上、地下和总体碳储量大小的影响。研究结果表明,随着淹水盐度增加,芦苇、互花米草和海三棱藨草地上部分与总体碳储量均显著降低。土壤盐度可分别解释其地上部分碳储量变异的47.2%、66.5%和72.7%,与总体碳储量变异的34.7%、45.0%和62.0%。随着淹水深度增加,芦苇地上部分、总体碳储量和海三棱藨草地上部分碳储量均显著降低,其变异的68.6%、28.5%和71.1%可由淹水深度变化(10—80cm)解释。互花米草在80cm淹水深度下仍有较高的地上部分碳储量和总体碳储量。3种盐生植物碳储量对淹水频率变化的响应差异均不显著,所有处理地下部分碳储量差异也未达到显著水平。总体而言,互花米草对水盐胁迫的耐受性要强于本地种芦苇和海三棱藨草。尽管互花米草和芦苇具有相对较高的碳储量,但水盐胁迫对其碳储量的显著抑制作用不容忽视。海三棱藨草碳储量本就不高,输入土壤的有机碳量较为有限,海平面上升及盐水入侵等逆境胁迫会使其对盐沼"碳汇"贡献更加微弱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号