首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
Monitoring the fusion of constitutive traffic with the plasma membrane has remained largely elusive. Ideally, fusion would be monitored with high spatial and temporal resolution. Recently, total internal reflection (TIR) microscopy was used to study regulated exocytosis of fluorescently labeled chromaffin granules. In this technique, only the bottom cellular surface is illuminated by an exponentially decaying evanescent wave of light. We have used a prism type TIR setup with a penetration depth of approximately 50 nm to monitor constitutive fusion of vesicular stomatitis virus glycoprotein tagged with the yellow fluorescent protein. Fusion of single transport containers (TCs) was clearly observed and gave a distinct analytical signature. TCs approached the membrane, appeared to dock, and later rapidly fuse, releasing a bright fluorescent cloud into the membrane. Observation and analysis provided insight about their dynamics, kinetics, and position before and during fusion. Combining TIR and wide-field microscopy allowed us to follow constitutive cargo from the Golgi complex to the cell surface. Our observations include the following: (1) local restrained movement of TCs near the membrane before fusion; (2) apparent anchoring near the cell surface; (3) heterogeneously sized TCs fused either completely; or (4) occasionally larger tubular-vesicular TCs partially fused at their tips.  相似文献   

2.
The strong inward rectification of Kir2.1 currents is reportedly due to blockade of the outward current by cytoplasmic magnesium (Mg(2+)(i)) and polyamines, and is known to be determined in part by three negatively charged amino acid residues: Asp172, Glu224, and Glu299 (D172, E224, E299). Our aim was to identify additional sites contributing to the inward rectification of Kir2.1 currents. To accomplish this, we introduced into wild-type Kir2.1 and its D172N and D172N & E224G & E299S mutants various point mutations selected on the basis of a comparison of the sequences of Kir2.1 and the weak rectifier sWIRK. By analyzing macroscopic currents recorded from Xenopus oocytes using two-electrode voltage clamp, we determined that S165L mutation decreases inward rectification, especially with the triple mutant. The susceptibility to blockade by intracellular blockers was examined using HEK293 transfectants and the inside-out patch clamp configuration. The sensitivity to spermine was significantly diminished in the D172N and triple mutant, but not the S165L mutant. Both the S165L and D172N mutants were less susceptible to blockade by Mg(2+)(i) than the wild-type channel, and the susceptibility was still lower in the D172N & S165L double mutant. These results suggest that S165 is situated deeper into the pore from inside than D172, where it is accessible to Mg(2+)(i) but not to spermine. The single channel conductance of the D172N mutant was similar to that of the wild-type Kir2.1, whereas the conductance of the S165L mutant was significantly lower. Permeation by extracellular Rb+ (Rb(+)(o)) was dramatically increased by S165L mutation, but was increased only slightly by D172N mutation. By contrast, the Rb+/K+ permeability ratio was increased equally by D172N and S165L mutation. We therefore propose that S165 forms the narrowest part of the Kir2.1 pore, where both extracellular and intracellular blockers plug the permeation pathway.  相似文献   

3.
Summary Isolated nerve cells fromLymnaea stagnalis were studied using the internal-perfusion and patch-clamp techniques. Patch excision frequently activated a voltage-independent Ba2+-permeable channel with a slope conductance of 27 pS at negative potentials (50mm Ba2+). This channel is not seen in patches on healthy cells and, unlike the voltage-dependent Ca channel, is not labile in isolated patches. The activity of the channel in inside-out patches is unaffected by intracellular ATP, Ca2+ below 1mm or the catalytic subunit of cAMP-dependent protein kinase but is reversibly blocked by millimolar intracellular Ca2+ or Ba2+. The channel can be activated in on-cell patches by either internal perfusion with high Ca2+ or the long-term internal perfusion of low Ca2+ solutions not containing ATP. These channels may carry the inward Ca2+ current which causes a regenerative increase in intracellular Ca+ when snail neurons are perfused with high Ca2+ solutions. High internal Ca2+, or long periods of internal perfusion with ATP-free solutions, induces an increase in a resting (–50 mV) whole-cell Ba2+ conductance. This conductance can be turned off by returning the intracellular perfusate to a low Ca2+ solution containing ATP and Mg2+. The activity of this channel appears to have an opposite dependence on intracellular conditions to that of the voltage-dependent Ca channel.  相似文献   

4.
Elevation of intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca2+]i increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca2+ rises <1 μ m . Larger [Ca2+]i rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca2+-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.  相似文献   

5.
The endothelin B (ETB) receptor can undergo a proteolytic cleavage resulting in an unglycosylated N-terminally truncated receptor. We investigated whether ETB receptor processing affects caveolar localisation and mitogenic signalling. Distinct subcellular localisations of ETB receptor constructs and epidermal growth factor (EGF) receptor ligands were analysed performing detergent-free caveolae preparations and total internal reflection fluorescence microscopy. ETB receptor-induced transactivation of the EGF receptor and its downstream signalling was investigated performing shedding assays and ERK1/2 phosphorylation analyses. In COS7 cells, the N-terminally truncated but not the full-length or glycosylation-deficient ETB receptor localised to caveolae. In caveolae-free HEK293 cells, only ETB receptor constructs fused to caveolin-2 localised to membrane microdomains. A caveolar accumulation of the ETB receptor disfavoured EGF receptor ligand shedding. Nonetheless, the activation of ERK1/2 was efficient and long-lasting. In HEK293 cells, the shedding activity was also impaired by N-terminal truncation. The subsequent ERK1/2 phosphorylation was long-lasting only for the full-length ETB receptor. We conclude that the ETB receptor localisation might depend on the presence of caveolae within the cell investigated. The data further suggest that caveolar enrichment of ETB receptors does not facilitate the release of EGF receptor ligands. However, independent of their localisation, ETB receptors are able to induce an ERK1/2 phosphorylation.  相似文献   

6.
Fu G  Zhang F  Cao L  Xu ZZ  Chen YZ  Wang GY  He C 《Biophysical chemistry》2008,136(1):13-18
In the present study, single-molecule fluorescence microscopy was used to examine the characteristics of plasma membrane targeting and microdomain localization of enhanced yellow fluorescent protein (eYFP)-tagged wild-type Dok5 and its variants in living Chinese hamster ovary (CHO) cells. We found that Dok5 can target constitutively to the plasma membrane, and the PH domain is essential for this process. Furthermore, single-molecule trajectories analysis revealed that Dok5 can constitutively partition into microdomain on the plasma membrane. Finally, the potential mechanism of microdomain localization of Dok5 was discussed. This study provided insights into the characteristics of plasma membrane targeting and microdomain localization of Dok5 in living CHO cells.  相似文献   

7.
Insulin stimulates glucose uptake into adipocytes by mobilizing intracellular membrane vesicles containing GLUT4 proteins to the plasma membrane. Here we applied time-lapse total internal reflection fluorescence microscopy to study moving parameters and characters of exogenously expressed GLUT4 vesicles in basal, insulin and nocodazole treated primary rat adipocytes. Our results showed that microtubules were essential for long-range transport of GLUT4 vesicles but not obligatory for GLUT4 distribution in rat adipocytes. Insulin reduced the mobility of the vesicles, made them tethered/docked to the PM and finally had constitutive exocytosis. Moreover, long-range bi-directional movements of GLUT4 vesicles were visualized for the first time by TIRFM. It is likely that there are interactions between insulin signaling and microtubules, to regulating GLUT4 translocation in rat adipocytes.  相似文献   

8.
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β‐cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β‐cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β‐cells and contribute to β‐cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β‐cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single‐granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose‐stimulated fusion events, and modulated the proportion of full fusion and kiss‐and‐run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol‐overloaded β‐cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol‐induced phosphatidylinositol 4,5‐bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss‐and‐run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.  相似文献   

9.
During regulated fusion of secretory granules with the plasma membrane, a fusion pore first opens and then dilates. The dilating pore allows cargo proteins from the dense core to be released into the extracellular space. Using real-time evanescent field fluorescence microscopy of live PC12 cells, it was determined how rapidly proteins of different sizes escape from single granules after fusion. Tissue plasminogen activator (tPA)-Venus is released 40-fold slower than the three times smaller neuropeptide Y [NPY-monomeric GFP (mGFP)]. An NPY bearing two mGFPs in tandem [NPY-(mGFP)2] as an intermediate-sized fusion probe is released most slowly. Although, the time–course of release varies substantially for a given probe. Coexpression of β-actin, actin-related protein 3 or mAbp1 slowed the release of the two larger cargo molecules but did not affect release of NPY-mGFP or of the granule-membrane-bound probe Vamp-pHluorin. Additionally, high concentrations of cytochalasin D slowed release of the tPA-Venus. Together these results suggest that fusion pore dilation is not the only determinate of release time–course and that actin rearrangements similar to those mediating actin-mediated motility influences the time–course of release without directly interfering with the granule membrane to cell membrane connection.  相似文献   

10.
While the prion protein (PrP) is clearly involved in neuropathology, its physiological roles remain elusive. Here, we demonstrate PrP functions in cell-substrate interaction in Drosophila S2, N2a and HeLa cells. PrP promotes cell spreading and/or filopodia formation when overexpressed, and lamellipodia when downregulated. Moreover, PrP normally accumulates in focal adhesions (FAs), and its downregulation leads to reduced FA numbers, increased FA length, along with Src and focal adhesion kinase (FAK) activation. Furthermore, its overexpression elicits the formation of novel FA-like structures, which require intact reggie/flotillin microdomains. Altogether, PrP modulates process formation and FA dynamics, possibly via signal transduction involving FAK and Src.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号