首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The response regulator AlgR is required for both alginate biosynthesis and type IV fimbria-mediated twitching motility in Pseudomonas aeruginosa. In this study, the roles of AlgR signal transduction and phosphorylation in twitching motility and biofilm formation were examined. The predicted phosphorylation site of AlgR (aspartate 54) and a second aspartate (aspartate 85) in the receiver domain of AlgR were mutated to asparagine, and mutant algR alleles were introduced into the chromosome of P. aeruginosa strains PAK and PAO1. Assays of these mutants demonstrated that aspartate 54 but not aspartate 85 of AlgR is required for twitching motility and biofilm initiation. However, strains expressing AlgR D85N were found to be hyperfimbriate, indicating that both aspartate 54 and aspartate 85 are involved in fimbrial biogenesis and function. algD mutants were observed to have wild-type twitching motility, indicating that AlgR control of twitching motility is not mediated via its role in the control of alginate biosynthesis. In vitro phosphorylation assays showed that AlgR D54N is not phosphorylated by the enteric histidine kinase CheA. These findings indicate that phosphorylation of AlgR most likely occurs at aspartate 54 and that aspartate 54 and aspartate 85 of AlgR are required for the control of the molecular events governing fimbrial biogenesis, twitching motility, and biofilm formation in P. aeruginosa.  相似文献   

3.
The gram-negative enteric bacterium Proteus mirabilis is a frequent cause of urinary tract infections in individuals with long-term indwelling catheters or with complicated urinary tracts (e.g., due to spinal cord injury or anatomic abnormality). P. mirabilis bacteriuria may lead to acute pyelonephritis, fever, and bacteremia. Most notoriously, this pathogen uses urease to catalyze the formation of kidney and bladder stones or to encrust or obstruct indwelling urinary catheters. Here we report the complete genome sequence of P. mirabilis HI4320, a representative strain cultured in our laboratory from the urine of a nursing home patient with a long-term (> or =30 days) indwelling urinary catheter. The genome is 4.063 Mb long and has a G+C content of 38.88%. There is a single plasmid consisting of 36,289 nucleotides. Annotation of the genome identified 3,685 coding sequences and seven rRNA loci. Analysis of the sequence confirmed the presence of previously identified virulence determinants, as well as a contiguous 54-kb flagellar regulon and 17 types of fimbriae. Genes encoding a potential type III secretion system were identified on a low-G+C-content genomic island containing 24 intact genes that appear to encode all components necessary to assemble a type III secretion system needle complex. In addition, the P. mirabilis HI4320 genome possesses four tandem copies of the zapE metalloprotease gene, genes encoding six putative autotransporters, an extension of the atf fimbrial operon to six genes, including an mrpJ homolog, and genes encoding at least five iron uptake mechanisms, two potential type IV secretion systems, and 16 two-component regulators.  相似文献   

4.
Proteus mirabilis, a cause of serious urinary tract infection and acute pyelonephritis, produces several putative virulence determinants, among them, fimbriae. Principally, two fimbrial types are produced by this species: mannose-resistant/Proteus-like (MR/P) fimbriae and mannose-resistant/Klebsiella-like (MR/K) fimbriae. To isolate MR/P fimbrial gene sequences, a P. mirabilis cosmid library was screened by immunoblotting and by hybridization with an oligonucleotide probe based on the N-terminal amino acid sequence of the isolated fimbrial polypeptide, ADQGHGTVKFVGSIIDAPCS. One clone, pMRP101, reacted strongly with a monoclonal antibody specific for MR/P fimbriae and with the DNA probe. This clone hemagglutinated both tannic acid-treated and untreated chicken erythrocytes with or without 50 mM D-mannose and was shown to be fimbriated by transmission electron microscopy. A 525-bp open reading frame, designated mrpA, predicted a 175-amino-acid polypeptide including a 23-amino-acid hydrophobic leader peptide. The unprocessed and processed polypeptides are predicted to be 17,909 and 15,689 Da, respectively. The N-terminal amino acid sequence of the processed fimbrial subunit exactly matched amino acid residues 24 to 43 predicted by the mrpA nucleotide sequence. The MrpA polypeptide shares 57% amino acid sequence identity with SmfA, the major fimbrial subunit of Serratia marcescens mannose-resistant fimbriae.  相似文献   

5.
Proteus mirabilis, a common cause of urinary tract infection (UTI), expresses several types of fimbria including mannose-resistant/Proteus-like fimbriae (MRP), uroepithelial cell adhesin (UCA), renamed non-agglutinating fimbriae (NAF) by some authors, and P. mirabilis fimbriae (PMF), which are potentially involved in adhesion to the uroepithelium. In this study, we immunised different groups of mice with recombinant structural subunits of these fimbriae (MrpA, UcaA and PmfA) using two mucosal routes (nasal and transurethral) and we transurethrally challenged the animals with a P. mirabilis uropathogenic isolate. Induction of specific serum and urine IgG and IgA was measured to assess the potential role of the humoral immune response in protection against experimental ascending P. mirabilis UTI. Intranasally MrpA- and UcaA-immunised mice were protected against P. mirabilis ascending UTI, since recovery of bacteria from kidneys and bladders was significantly lower than in PBS-treated mice, and both fimbrial subunits significantly induced specific serum and urine antibodies. Only MrpA and PmfA transurethrally immunised animals were protected only at the kidney level, and in this case only MrpA-immunised mice exhibited significant serum IgG induction. Correlation analysis did not show a significant relationship between serum and urine specific antibody response and protection observed against infection. Our results suggest that an immunisation strategy based on structural fimbrial proteins may be useful to prevent P. mirabilis UTI. Further studies are being carried out to characterise the immune and inflammatory response induced by P. mirabilis recombinant fimbrial subunits.  相似文献   

6.
Proteus mirabilis is an important cause of urinary tract infections (UTIs) and can result in acute pyelonephritis. Proteus mirabilis expresses several, morphologically distinct, fimbrial species, and previous studies have shown that the nonagglutinating fimbriae (NAF) mediate bacterial adherence to a number of cell lines, including Madin-Darby canine kidney (MDCK) cells. Immunoblot overlay analysis of the plasma membrane fraction from MDCK cells with purified NAF revealed a 34-kDa band, which has been analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Database search identified galectin-3 as a potential protein candidate. Immunocytochemical assay of MDCK cells with a galectin-3-specific monoclonal antibody, anti-Mac-2, confirmed its presence on the plasma membrane extracellular surface. Preincubation of P. mirabilis with anti-Mac-2 monoclonal antibodies, specific for galectin-3, resulted in the inhibition of bacterial binding to MDCK cells. These data suggest a role for galectin-3, interacting with appropriately glycosylated surface receptors and P. mirabilis fimbriae, as a mediator of bacterial adherence in vitro.  相似文献   

7.
The opportunistic pathogen Pseudomonas aeruginosa has redundant molecular systems that contribute to its pathogenicity. Those assembling fimbrial structures promote complex organized community lifestyle. We characterized a new 5.8 kb genetic locus, cupE, that includes the conserved usher- and chaperone-encoding genes. This locus, widely conserved in different bacterial species, contains four additional genes encoding non-archetypal fimbrial subunits. We first evidenced that the cupE gene cluster was specifically expressed in biofilm conditions and was responsible for fibre assembly containing at least CupE1 protein, at the bacterial cell surface. These fimbriae not only played a significant role in the early stages (microcolony and macrocolony formation) but also in shaping 3D mushrooms during P. aeruginosa biofilm development. Using wide-genome transposon mutagenesis, we identified the PprAB two-component system (TCS) as a regulator of cupE expression, and further demonstrated the involvement of the PprAB TCS in direct CupE fimbrial assembly activation. Thus, this TCS represents a new regulatory element controlling the transition between planktonic and community lifestyles in P. aeruginosa.  相似文献   

8.
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.  相似文献   

9.
Type 1 fimbriae and flagella have been previously shown to contribute to the virulence of uropathogenic Escherichia coli (UPEC) within the urinary tract. In this study, the relationship between motility and type 1 fimbrial expression was tested for UPEC strain CFT073 by examining the phenotypic effect of fimbrial expression on motility and the effect that induction of motility has on type 1 fimbrial expression. While constitutive expression of type 1 fimbriae resulted in a significant decrease in motility and flagellin expression (P < 0.0001), a loss of type 1 fimbrial expression did not result in increased motility. Additionally, hypermotility and flagellar gene over- and underexpression were not observed to affect the expression of type 1 fimbriae. Hence, it appeared that the relationship between type 1 fimbrial expression and motility is unidirectional, where the overexpression of type 1 fimbriae dramatically affects motility and flagellum expression but not vice versa. Moreover, the constitutive expression of type 1 fimbriae in UPEC cystitis isolate F11 and the laboratory strain E. coli K-12 MG1655 also resulted in decreased motility, suggesting that this phenomenon is not specific to CFT073 or UPEC in general. Lastly, by analyzing the repression of motility caused by constitutive type 1 fimbrial expression, it was concluded that the synthesis and presence of type 1 fimbriae at the bacterial surface is only partially responsible for the repression of motility, as evidenced by the partial restoration of motility in the CFT073 fim L-ON DeltafimAICDFGH mutant. Altogether, these data provide further insight into the complex interplay between type 1 fimbrial expression and flagellum-mediated motility.  相似文献   

10.
The pathogenic bacterium Proteus mirabilis exhibits a form of multicellular behaviour called swarming migration. This involves the differentiation of vegetative cells at the colony margin into swarm cells which are long, aseptate, multinucleate, hyper-flagellated filaments able to undergo repeated cycles of co-ordinated population migration and consolidation (reversion to vegetative cells). Transposon mutagenesis of uropathogenic P. mirabilis strain U6450 with Tn5 generated 4860 chromosomal insertions and, of these, 75 (1.6%) caused visibly abnormal swarming behaviour, indicating that at least 45 genes are involved in directing motility, cell differentiation and multicellular behaviour. While about one fifth of the swarm-defective mutants lacked flagella and were non-motile non-swarming (NMNS) the majority were normally flagellated and motile but were unable to form swarm cells (motile non-swarming, MNS), or were motile and able to form swarm cells but displayed aberrant patterns of multicellular migration (dendritic swarming, DS) or consolidation (frequent and infrequent consolidation, FC and IC). Restriction enzyme mapping of representative mutant DNAs by Southern hybridization with transposon DNA probes identified eight different mutated genetic loci within the five phenotypic classes. Subsequent Southern analysis of large restriction fragments separated by pulsed-field electrophoresis showed that these eight mutated loci required for motility, cell differentiation and multicellular migration were clustered on a region of DNA spanning approximately 8% of the 4.2 mbp P. mirabilis chromosome. Further linkage analysis showed that the DS locus involved in the ordered migration of the swarm cell population mapped separately from two main clusters of swarm loci, one cluster containing, within 112 kbp, genetic determinants of motility (NMNS) and also differentiation into swarm cells (MNS1, MNS2), and a second within a neighbouring 95 kbp DNA sequence containing three loci involved in the control of consolidation (FC, IC1, IC2).  相似文献   

11.
12.
Proteus mirabilis is a common cause of urinary tract infection (UTI) and produce several types of different fimbriae, including mannose-resistant/Proteus-like fimbriae, uroepithelial cell adhesin (UCA), and P. mirabilis fimbriae (PMF). Different authors have related these fimbriae with different aspects of P. mirabilis pathogenesis, although the precise role of fimbriae in UTI has not yet been elucidated. In this work we expressed and purified recombinant structural fimbrial proteins of these fimbriae (MrpA, UcaA, and PmfA) and assessed their role as protective antigens using an ascending and a haematogenous model of UTI in the mouse. MrpA protected subcutaneously immunised mice in both models, suggesting that it could be taken into account as a promising vaccine candidate against P. mirabilis UTI. UcaA could also be an interesting subunit to be studied although it only protected mice that were challenged intravenously. All subunits elicited a strong specific serum IgG response but there was no significant correlation between antibody levels and protection. Only PmfA-immunised mice elicited a significant urinary antibody response but this protein was unable to confer protection against P. mirabilis experimental challenges. These results may contribute to the development of vaccines against P. mirabilis, an important cause of complicated UTI.  相似文献   

13.
Swarming in Proteus mirabilis is characterized by the coordinated surface migration of multicellular rafts of highly elongated, hyperflagellated swarm cells. We describe a transposon mutant, MNS185, that was unable to swarm even though vegetative cells retained normal motility and the ability to differentiate into swarm cells. However, these elongated cells were irregularly curved and had variable diameters, suggesting that the migration defect results from the inability of these deformed swarm cells to align into multicellular rafts. The transposon was inserted at codon 196 of a 228-codon gene that lacks recognizable homologs. Multiple copies of the wild-type gene, called ccmA, for curved cell morphology, restored swarming to the mutant. The 25-kDa CcmA protein is predicted to span the inner membrane twice, with its C-terminal major domain being present in the cytoplasm. Membrane localization was confirmed both by immunoblotting and by electron microscopy of immunogold-labelled sections. Two forms of CcmA were identified for wild-type P. mirabilis; they were full-length integral membrane CcmA1 and N-terminally truncated peripheral membrane CcmA2, both present at approximately 20-fold higher concentrations in swarm cells. Differentiated MNS185 mutant cells contained wild-type levels of the C-terminally truncated versions of both proteins. Elongated cells of a ccmA null mutant were less misshapen than those of MNS185 and were able to swarm, albeit more slowly than wild-type cells. The truncated CcmA proteins may therefore interfere with normal morphogenesis, while the wild-type proteins, which are not essential for swarming, may enhance migration by maintaining the linearity of highly elongated cells. Consistent with this view, overexpression of the ccmA gene caused cells of both Escherichia coli and P. mirabilis to become enlarged and ellipsoidal.  相似文献   

14.
Twitching motility is a form of surface translocation mediated by the extension, tethering, and retraction of type IV pili. Three independent Tn5-B21 mutations of Pseudomonas aeruginosa with reduced twitching motility were identified in a new locus which encodes a predicted protein of unknown function annotated PA4959 in the P. aeruginosa genome sequence. Complementation of these mutants with the wild-type PA4959 gene, which we designated fimX, restored normal twitching motility. fimX mutants were found to express normal levels of pilin and remained sensitive to pilus-specific bacteriophages, but they exhibited very low levels of surface pili, suggesting that normal pilus function was impaired. The fimX gene product has a molecular weight of 76,000 and contains four predicted domains that are commonly found in signal transduction proteins: a putative response regulator (CheY-like) domain, a PAS-PAC domain (commonly involved in environmental sensing), and DUF1 (or GGDEF) and DUF2 (or EAL) domains, which are thought to be involved in cyclic di-GMP metabolism. Red fluorescent protein fusion experiments showed that FimX is located at one pole of the cell via sequences adjacent to its CheY-like domain. Twitching motility in fimX mutants was found to respond relatively normally to a range of environmental factors but could not be stimulated by tryptone and mucin. These data suggest that fimX is involved in the regulation of twitching motility in response to environmental cues.  相似文献   

15.
16.
One of the six predicted Proteus mirabilis autotransporters (ATs), ORF c2341, is predicted to contain a serine protease motif and was earlier identified as an immunogenic outer membrane protein in P. mirabilis. The 3.2 kb gene encodes a 117 kDa protein with a 58-amino-acid-long signal peptide, a 75-kDa-long N-terminal passenger domain and a 30-kDa-long C-terminal translocator. Affinity-purified 110 kDa AT exhibited chymotrypsin-like activity and hydrolysed N-Suc-Ala-Ala-Pro-Phe-pNa and N-Suc-Ala-Ala-Pro-Leu-pNa with a K(M) of 22 muM and 31 muM, respectively, under optimal pH of 8.5-9.0 in a Ca(2+)-dependent manner. Activity was inhibited by subtilase-specific inhibitors leupeptin and chymostatin. Both the cell-associated and purified form elicited cytopathic effects on cultured kidney and bladder epithelial cells. Substrate hydrolysis as well as cytotoxicity was associated with the passenger domain and was compromised upon mutation of any of the catalytic residues (Ser366, His147 and Asp533). At alkaline pH and optimal cell density, the AT also promoted autoaggregation of P. mirabilis and this function was independent of its protease activity. Cytotoxicity, autoaggregation and virulence were significantly reduced in an isogenic pta mutant of P. mirabilis. Proteus toxic agglutinin (Pta) represents a novel autotransported cytotoxin with no bacterial homologues that works optimally in the alkalinized urinary tract, a characteristic of urease-mediated urea hydrolysis during P. mirabilis infection.  相似文献   

17.
Signature-tagged transposon mutagenesis of Salmonella with differential recovery from wild-type and immunodeficient mice revealed that the gene here named cdgR[for c-diguanylate (c-diGMP) regulator] is required for the bacterium to resist host phagocyte oxidase in vivo. CdgR consists solely of a glutamate-alanine-leucine (EAL) domain, a predicted cyclic diGMP (c-diGMP) phosphodiesterase. Disruption of cdgR decreased bacterial resistance to hydrogen peroxide and accelerated bacterial killing of macrophages. An ultrasensitive assay revealed c-diGMP in wild-type Salmonella with increased levels in the CdgR-deficient mutant. Thus, besides its known role in regulating cellulose synthesis and biofilm formation, bacterial c-diGMP also regulates host-pathogen interactions involving antioxidant defence and cytotoxicity.  相似文献   

18.
Serratia marcescens swarms at 30 degrees C but not at 37 degrees C on a nutrient-rich (LB) agar surface. Mini-Tn5 mutagenesis of S. marcescens CH-1 yielded a mutant (WC100) that swarms not only vigorously at 37 degrees C but also earlier and faster than the parent strain swarms at 30 degrees C. Analysis of this mutant revealed that the transposon was inserted into a gene (rssA) predicted to encode a bacterial two-component signal transduction sensor kinase, upstream of which a potential response regulator gene (rssB) was located. rssA and rssB insertion-deletion mutants were constructed through homologous recombination, and the two mutants exhibited similar swarming phenotypes on LB swarming agar, in which swarming not only occurred at 37 degrees C but also initiated at a lower cell density, on a surface with a higher agar concentration, and more rapidly than the swarming of the parent strain at 30 degrees C. Both mutants also exhibited increased hemolysin activity and altered cell surface topologies compared with the parent CH-1 strain. Temperature and certain saturated fatty acids (SFAs) were found to negatively regulate S. marcescens swarming via the action of RssA-RssB. Analysis of the fatty acid profiles of the parent and the rssA and rssB mutants grown at 30 degrees C or 37 degrees C and under different nutrition conditions revealed a relationship between cellular fatty acid composition and swarming phenotypes. The cellular fatty acid profile was also observed to be affected by RssA and RssB. SFA-dependent inhibition of swarming was also observed in Proteus mirabilis, suggesting that either SFAs per se or the modulation of cellular fatty acid composition and hence homeostasis of membrane fluidity may be a conserved mechanism for regulating swarming motility in gram-negative bacteria.  相似文献   

19.
Insulin exerts many of its metabolic actions via the canonical phosphatidylinositide 3 kinase (PI3K)/Akt pathway, leading to phosphorylation and 14-3-3 binding of key metabolic targets. We previously identified a GTPase-activating protein (GAP) for Rac1 called RhoGAP22 as an insulin-responsive 14-3-3 binding protein. Insulin increased 14-3-3 binding to RhoGAP22 fourfold, and this effect was PI3K dependent. We identified two insulin-responsive 14-3-3 binding sites (pSer(16) and pSer(395)) within RhoGAP22, and mutagenesis studies revealed a complex interplay between the phosphorylation at these two sites. Mutating Ser(16) to alanine blocked 14-3-3 binding to RhoGAP22 in vivo, and phosphorylation at Ser(16) was mediated by the kinase Akt. Overexpression of a mutant RhoGAP22 that was unable to bind 14-3-3 reduced cell motility in NIH-3T3 fibroblasts, and this effect was dependent on a functional GAP domain. Mutation of the catalytic arginine of the GAP domain of RhoGAP22 potentiated growth factor-stimulated Rac1 GTP loading. We propose that insulin and possibly growth factors such as platelet-derived growth factor may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of RhoGAP22, leading to modulation of Rac1 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号