首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
The yeast Saccharomyces cerevisiae contains three heat-inducible hsp70 genes. We have characterized the promoter region of the hsp70 heat shock gene YG100, that also displays a basal level of expression. Deletion of the distal region of the promoter resulted in an 80% drop in the basal level of expression without affecting expression after heat shock. Progressive-deletion analysis suggested that sequences necessary for heat-inducible expression are more proximal, within 233 base pairs of the initiation region. The promoter region of YG100 contains multiple elements related to the Drosophila melanogaster heat shock element (HSE; CnnGAAnnT TCnnG). Deletion of a proximal promoter region containing one element, HSE2, eliminated most of the heat-inducible expression of YG100. The upstream activation site (UAS) of the yeast cytochrome c gene (CYC1) can be substituted by a single copy of HSE2 plus its adjoining nucleotides (UASHS). This hybrid promoter displayed a substantial level of expression before heat shock, and the level of expression was elevated eightfold by heat shock. YG100 sequences that flank UASHS inhibited basal expression of UASHS in the hybrid promoter but not its heat-inducible expression. This inhibition of basal UASHS activity suggests that negative regulation is involved in modulating expression of this yeast heat shock gene.  相似文献   

6.
7.
Heat shock and the heat shock proteins.   总被引:23,自引:2,他引:21       下载免费PDF全文
  相似文献   

8.
9.
10.
11.
12.
13.
12-Hydroxyeicosatetraenoic acid (12-HETE) induces the expression of individual heat shock proteins in human leukocytes (lymphocytes, monocytes, basophil granulocytes; LMBs). Metabolic radiolabeling of LMBs revealed that exogenous 12-HETE (20 ng) led to the expression of a 65- and 83kDa protein. Immunoreactivity towards the 65kDa protein was commonly detected. In contrast, after heat shock treatment and predominantly after incubation with 12-HETE significant immunoreactivity (anti-hsp72) was detected in the lower molecular weight range whereas immunoreactivity (anti-hsp90, AC88) was only observed after heat shock treatment of LMBs.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Soybean seedlings when exposed to a heat shock respond in a manner very similar to that exhibited by cultured cells, and reported earlier [2]. Maximum synthesis of heat shock proteins (HSPs) occurs at 40C. The heat shock response is maintained for a relatively short time under continuous high temperature. After 2.5 hr at 40 C the synthesis of HSPs decreases reaching a very low level by 6 hr. The HSPs synthesized by cultured cells and seedlings are identical and there is a large degree of similarity in HSPs synthesized between the taxonomically widely separated species, soybean and corn. Storage protein synthesis in the developing soybean embryo is not inhibited but is actually stimulated during a heat shock, unlike most other non-HSPs, whose synthesis is greatly reduced. Seedlings respond differently to a gradual increase in temperature than they do a sudden heat shock. There is an upward shift of several degrees in the temperature at which maximum protein synthesis occurs and before it begins to be inhibited. In addition, there appears to be a protection of normal protein synthesis from heat shock inhibition when the temperature increase is gradual. An additional function of the heat shock phenomenon might be the protection of seedlings from death caused by extreme heat stress. The heat shock response appears to have relevance to plants in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号